HW8 SOLUTION

JI ZENG

Only problems with provided solutions will be graded. Solutions might be concise for some problems, but please be noticed that they don't reflect the wanted level of detailedness of your answer.

Armstrong.11.3
$H \cap K$ is a subgroup of H and K, so $|H \cap K|$ divides $|H|$ as well as $|K|$. As $|H|$ and $|K|$ are coprime, $|H \cap K|=1$, so $H \cap K=\{e\}$.

Armstrong.11.4
Write $|G|=p q$ for two primes p, q. Let H be arbitrary proper subgroup of G, so $|H| \mid p q$ and $|H| \neq p q$. So we have $|H|=1$ or $|H|=p$ or $|H|=q$. So we conclude by the fact that every group of prime order is cyclic.

Armstrong.15.12
A proper normal subgroup of A_{4} is $V=\{e,(12)(34),(13)(24),(14)(23)\}$ or the trivial group $\{e\}$. $(12345)^{-1}(345)^{-1}(12345)(345)=(245)$ and $(12)(34)(345)^{-1}(12)(34)(345)=(354)$. Let H be a non-trivial normal subgroup of A_{5}. Pick $e \neq h \in H . \forall \delta \in A_{5}$, as H is normal $\delta^{-1} h \delta \in H$. So $h^{-1} \delta^{-1} h \delta \in H$. Consider the cycle decomposition of h, in $A_{5} h$ could only be a 5 -cycle or 2,2 -cycle. If $h=(a b c d e)$, take $\delta=(c d e)$, by above computation, $\delta^{-1} h \delta$ is a 3 -cycle. If $h=(a b)(c d)$, take $(c d e)$, by above computation, $\delta^{-1} h \delta$ is a 3 -cycle. Hence H has a 3 -cycle always. Let's call this 3 -cycle α.
By Armstrong.14.5, every 3 -cycle β is conjugate to $\alpha \in H$, i.e. $\exists \delta \in A_{5}$ s.t. $\beta=\delta \alpha \delta^{-1}$. As H is normal, $\beta \in H$ as well. By arbitrariness of β, we conclude that H has all the 3-cycles, so by HW7 Problem.B $A_{5} \subset H$. So $H=A_{5}$, contradicting our assumption that H is proper in A_{5}.

Problem.B
(a) If $a \in H$, then $a^{2} \in H$ as H is a subgroup. If $a \notin H$, then $a H \cap H=\emptyset$, as $[|G|:|H|]=2 G=H \cup a H$. So either $a^{2} \in H$ or $a^{2} \in a H$, but it's impossible for $a^{2} \in a H$, otherwise $a^{2}=a h$ for some $h \in H$ so $a=h \in H$ a contradiction.
H is normal. For an arbitrary $a \in G$, we want to show $a H=H a$. If $a \in H$, then $a H=H=H a$ by group property. If $a \in H$, by above argument, $a H=G \backslash H=H a$.
(b) Because A_{n} is generated by 3 -cycles, it suffices to prove for any arbitrary 3 -cycle $(a b c)$, then it's in H. Indeed, $(a b c)=(a c b)^{2}$, so apply part.(a) with $a=(a b c)$. So $H=A_{n}$ is not of index two.
(c) By isomorphism theorem we have $\frac{A_{4}}{\operatorname{ker}(f)} \simeq \frac{\mathbb{Z}}{N \mathbb{Z}}$, so $\left[A_{4}: \operatorname{ker}(f)\right]=N$ and N must divide $\left|A_{4}\right|=12$.
$N=1$: The trivial homomorphism $f: A_{4} \rightarrow\{e\}$ works.
$N=2$: No such f exists because otherwise $\operatorname{ker}(f)$ would be of index 2 , contradicting part.(b).
$N=3:$ We have a normal subgroup $V \subset A_{4}$ of order 4 , we have the projection homomorphism

$$
f: A_{4} \rightarrow A_{4} / V, \alpha \mapsto \alpha V
$$

As $\left|\frac{A_{4}}{V}\right|=3$ is a prime, $\frac{A_{4}}{V} \simeq \frac{\mathbb{Z}}{3 \mathbb{Z}}$.
$N=4$: No such f exists because otherwise $\operatorname{ker}(f)$ would be a normal subgroup of order 3. As 3 is a prime, $\operatorname{ker}(f)$ is cyclic. The only kind of elements of order 3 in A_{4} are 3 -cycles. So $\operatorname{ker}(f)=\langle\alpha\rangle$ for some 3-cycle. However, such a group cannot be normal.
$N=6$: No such f exists because otherwise $\operatorname{ker}(f)$ would be a normal subgroup of order 2. As 2 is a prime, $\operatorname{ker}(f)$ is cyclic. The only kind of elements of order 2 in A_{4} are transpositions. So $\operatorname{ker}(f)=\langle\alpha\rangle$ for some transposition. However, such a group cannot be normal.
$N=12$: No such f exists because such f would be an isomorphism. But A_{4} is not abelian, while $\frac{\mathbb{Z}}{12 \mathbb{Z}}$ is.

Problem.D
(a) $\langle[3]\rangle=\{[3],[2],[6],[4],[5],[1]\}$. Because we have $6 \cdot[4]=[0]$. So we can define $f: \mathbb{Z}_{7}^{*} \rightarrow \mathbb{Z}_{12}$ by $f\left([3]^{k}\right)=k[4]$.
(b) $f([1])=[0], f([2])=[8], f([4])=[4], f([5])=[8]$ and $f([6])=[0]$.
(c) $\operatorname{ker}(f)=\{[1],[6]\}$ and $\operatorname{im}(f)=\{[0],[4],[8]\}$.

