Math 103A, Modern Algebra I, MT1

Monday, October 21st, 2019, 10-10:50am, APM B402A

- Your Name:
- ID Number:
- Section:

$$
\text { B01 (5:00 PM) } \quad \mathrm{B} 02(6: 00 \mathrm{PM})
$$

Problem \#	Points (out of 10)
1	
2	
3	
Total (out of 40):	

Problem 1. Recall that \mathbb{Z}_{13} denotes the additive group of all residue classes modulo 13.
(a) Find its cardinality $\left|\mathbb{Z}_{13}\right|$.
(b) Compute the following sums in \mathbb{Z}_{13}.

$$
[7]+[11], \quad[11]+[12], \quad[-3]+[17] .
$$

(Express your answers in the form $[x]$ with x in the range $0 \leq x<13$.)
(c) Give the inverse class of [6] in \mathbb{Z}_{13}. More precisely find the $x \in \mathbb{Z}$ in the range $0 \leq x<13$ satisfying the congruence $6+x \equiv 0(\bmod 13)$.

Problem 2. Recall that \mathbb{Z}_{13}^{\times}denotes the multiplicative group of invertible residue classes modulo 13.
(a) Find its cardinality $\left|\mathbb{Z}_{13}^{\times}\right|$.
(b) Compute the following products in \mathbb{Z}_{13}^{\times}.

$$
[3] \bullet[5], \quad[5] \bullet[7], \quad[7] \bullet[-11] .
$$

(Express your answers in the form $[x]$ with x in the range $0 \leq x<13$.)
(c) Explain why [11] belongs to \mathbb{Z}_{13}^{\times}and find its inverse class: Find $x \in \mathbb{Z}$ in the range $0 \leq x<13$ satisfying the congruence $11 x \equiv 1(\bmod 13)$.

Problem 3. Let F denote the set of all numbers of the form $a+b \sqrt{3}$ with rational coefficients $a, b \in \mathbb{Q}$. Let $F^{\times}=F-\{0\}$ be the nonzero numbers.
(a) Explain why addition and multiplication \bullet define composition laws on F.
(b) Check that $(F,+)$ and $\left(F^{\times}, \bullet\right)$ are groups. Give all details.
(c) Compute the multiplicative inverse of $1+2 \sqrt{3}$. Find $a, b \in \mathbb{Q}$ such that

$$
(1+2 \sqrt{3})^{-1}=a+b \sqrt{3} .
$$

Problem 4. Let $(G, *)$ be a group. Two elements $a, b \in G$ are conjugate when one can write $b=g * a * g^{-1}$ for some $g \in G$. If so we write $a \sim b$.
(a) Find all $a \in G$ satisfying $a \sim e$ (where e is the neutral element).
(b) Prove that \sim gives an equivalence relation on G. Check these properties:
(i) $a \sim a$
(ii) $a \sim b \Longleftrightarrow b \sim a$
(iii) $a \sim b$ and $b \sim c \Longrightarrow a \sim c$
for any three elements $a, b, c \in G$.
(c) Are the two matrices $\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{ll}\pi & \frac{1}{3} \\ 2\end{array}\right)$ conjugate in $\mathrm{GL}_{2}(\mathbb{R})$?

