MATH 103A, MODERN ALGEBRA I, MT1 Monday, October 21st, 2019, 10-10:50am, APM B402A

- Your Name:
- ID Number:
- Section:

B01 (5:00 PM) B02 (6:00 PM)

Problem #	Points (out of 10)
1	
2	
3	
4	

Total (out of 40):

Problem 1. Recall that \mathbb{Z}_{13} denotes the additive group of all residue classes modulo 13.

- (a) Find its cardinality $|\mathbb{Z}_{13}|$.
- (b) Compute the following sums in \mathbb{Z}_{13} .

[7] + [11], [11] + [12], [-3] + [17].

(Express your answers in the form [x] with x in the range $0 \leq x < 13.)$

(c) Give the inverse class of [6] in \mathbb{Z}_{13} . More precisely find the $x \in \mathbb{Z}$ in the range $0 \le x < 13$ satisfying the congruence $6 + x \equiv 0 \pmod{13}$.

Problem 2. Recall that \mathbb{Z}_{13}^{\times} denotes the multiplicative group of invertible residue classes modulo 13.

- (a) Find its cardinality $|\mathbb{Z}_{13}^{\times}|$.
- (b) Compute the following products in \mathbb{Z}_{13}^{\times} .

 $[3] \bullet [5], [5] \bullet [7], [7] \bullet [-11].$

(Express your answers in the form [x] with x in the range $0 \leq x < 13.)$

(c) Explain why [11] belongs to \mathbb{Z}_{13}^{\times} and find its inverse class: Find $x \in \mathbb{Z}$ in the range $0 \le x < 13$ satisfying the congruence $11x \equiv 1 \pmod{13}$.

Problem 3. Let F denote the set of all numbers of the form $a + b\sqrt{3}$ with rational coefficients $a, b \in \mathbb{Q}$. Let $F^{\times} = F - \{0\}$ be the nonzero numbers.

- (a) Explain why addition and multiplication \bullet define composition laws on F.
- (b) Check that (F, +) and (F^{\times}, \bullet) are groups. Give all details.
- (c) Compute the multiplicative inverse of $1 + 2\sqrt{3}$. Find $a, b \in \mathbb{Q}$ such that

$$(1+2\sqrt{3})^{-1} = a + b\sqrt{3}.$$

Problem 4. Let (G, *) be a group. Two elements $a, b \in G$ are *conjugate* when one can write $b = g * a * g^{-1}$ for some $g \in G$. If so we write $a \sim b$.

- (a) Find all $a \in G$ satisfying $a \sim e$ (where e is the neutral element).
- (b) Prove that \sim gives an equivalence relation on G. Check these properties:
 - (i) $a \sim a$
 - (ii) $a \sim b \iff b \sim a$
 - (iii) $a \sim b \ \text{and} \ b \sim c \Longrightarrow a \sim c$

for any three elements $a, b, c \in G$.

(c) Are the two matrices $\begin{pmatrix} 1 & 2 \\ 3 & \pi \end{pmatrix}$ and $\begin{pmatrix} \pi & 1 \\ 2 & 3 \end{pmatrix}$ conjugate in $\operatorname{GL}_2(\mathbb{R})$?