Math 103A, Modern Algebra I, MT2

Wednesday, November 13th, 2019, 10-10:50am, APM B402A

- Your Name:
- ID Number:
- Section:

$$
\text { B01 (5:00 PM) } \quad \text { B02 (6:00 PM) }
$$

Problem \#	Points (out of 10)
1	
2	
3	
Total (out of 40):	

Problem 1. Let $(G, *)$ be a cyclic group of size 6. Choose a generator $a \in G$.
(a) Find the order of each of its elements:

$$
\begin{array}{llllll}
e & a & a^{2} & a^{3} & a^{4} & a^{5} .
\end{array}
$$

Circle those x above for which $G=\langle x\rangle$ holds.
(b) List the elements of the non-trivial subgroups $\left\langle a^{2}\right\rangle$ and $\left\langle a^{3}\right\rangle$.
(c) Is the product $G \times G$ abelian? Is $G \times G$ cyclic? If so find a generator.

Problem 2. Recall that $\left(\mathbb{Z}_{7}^{\times}, \bullet\right)$ is the multiplicative group of invertible residue classes modulo 7 .
(a) Check that the residue class [3] generates \mathbb{Z}_{7}^{\times}. Find its size $\left|\mathbb{Z}_{7}^{\times}\right|$.
(b) Find the order of each of the elements:

$$
[1] \quad[2] \quad[3] \quad[4] \quad[5] \quad[6] .
$$

Circle those $[x]$ above for which $\mathbb{Z}_{7}^{\times}=\langle[x]\rangle$ holds.
(c) Find the integer r in the interval $0 \leq r<7$ satisfying the congruence

$$
3^{71} \equiv r(\bmod 7)
$$

Problem 3. Let D_{4} be the dihedral group of symmetries of a square centered at the origin. Introduce
$r=$ rotation by $\frac{\pi}{2}$ in the counterclockwise direction,
$s=$ reflection across the horizontal axis.
Recall the relations $r^{4}=s^{2}=e$ and $r s=s r^{-1}$.
(a) Give its cardinality $\left|D_{4}\right|$. Is D_{4} an abelian group?
(b) Describe geometrically what the transformation $r s$ does to a point in the plane: If $r s$ is a rotation give the angle, if $r s$ is a reflection give the axis.
(c) Identify the element $s r s^{-1}$ on the list below. Justify your answer.

$$
e \quad r \quad r^{2} \quad r^{3} \quad s \quad s r \quad s r^{2} \quad s r^{3}
$$

Problem 4. Let $\alpha \in S_{7}$ be the permutation given by $\alpha=(1352)(5137)$.
(a) Express α in array form. That is, fill in the blank boxes below.

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\square & \square & \square & \square & \square & \square & \square
\end{array}\right)
$$

(b) Is α a cycle? If not, find its decomposition into disjoint cycles.
(c) Compute ord (α) and $\operatorname{sign}(\alpha)$. Does α belong to A_{7} ?

