MATH 103A, MODERN ALGEBRA I, MT2 Wednesday, November 13th, 2019, 10-10:50am, APM B402A

- Your Name:
- ID Number:
- Section:

B01 (5:00 PM) B02 (6:00 PM)

Problem $\#$	Points (out of 10)
1	
2	
3	
4	

Total (out of 40):

Problem 1. Let (G, *) be a cyclic group of size 6. Choose a generator $a \in G$.

(a) Find the <u>order</u> of each of its elements:

e a a^2 a^3 a^4 a^5 .

Circle those x above for which $G = \langle x \rangle$ holds.

- (b) List the elements of the non-trivial subgroups $\langle a^2 \rangle$ and $\langle a^3 \rangle$.
- (c) Is the product $G\times G$ abelian? Is $G\times G$ cyclic? If so find a generator.

Problem 2. Recall that $(\mathbb{Z}_7^{\times}, \bullet)$ is the multiplicative group of invertible residue classes modulo 7.

- (a) Check that the residue class [3] generates \mathbb{Z}_7^{\times} . Find its size $|\mathbb{Z}_7^{\times}|$.
- (b) Find the order of each of the elements:

[1] [2] [3] [4] [5] [6].

Circle those [x] above for which $\mathbb{Z}_7^\times = \langle [x] \rangle$ holds.

(c) Find the integer r in the interval $0 \leq r < 7$ satisfying the congruence

 $3^{71} \equiv r \pmod{7}.$

Problem 3. Let D_4 be the dihedral group of symmetries of a square centered at the origin. Introduce

r=rotation by $\frac{\pi}{2}$ in the counterclockwise direction,

s=reflection across the horizontal axis.

Recall the relations $r^4 = s^2 = e$ and $rs = sr^{-1}$.

- (a) Give its cardinality $|D_4|$. Is D_4 an abelian group?
- (b) Describe geometrically what the transformation rs does to a point in the plane: If rs is a rotation give the angle, if rs is a reflection give the axis.
- (c) Identify the element srs^{-1} on the list below. Justify your answer.

e r r^2 r^3 s sr sr^2 sr^3

Problem 4. Let $\alpha \in S_7$ be the permutation given by $\alpha = (1352)(5137)$.

(a) Express α in array form. That is, fill in the blank boxes below.

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \Box & \Box & \Box & \Box & \Box & \Box & \Box \end{pmatrix}$$

- (b) Is α a cycle? If not, find its decomposition into disjoint cycles.
- (c) Compute $\operatorname{ord}(\alpha)$ and $\operatorname{sign}(\alpha)$. Does α belong to A_7 ?