Due Friday January 19th by 5PM in your TA's box

From Lauritzen's book:

- Exercises 3.6 (starting page 138): 3¹, 1, 2, 15, 23

Problem A. In this exercise let $\iota=\sqrt{-1}$ and consider the four matrices

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad i=\left(\begin{array}{cc}
\iota & 0 \\
0 & -\iota
\end{array}\right) \quad j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad k=\left(\begin{array}{cc}
0 & \iota \\
\iota & 0
\end{array}\right) .
$$

Let $\mathbb{H} \subset M_{2}(\mathbb{C})$ denote the set of all matrices $q=a 1+b i+c j+d k$ where the coefficients run over all real numbers $(a, b, c, d \in \mathbb{R})$.
(a) Check the relations $i^{2}=j^{2}=k^{2}=i j k=-1$ and conclude that \mathbb{H} is a subring of $M_{2}(\mathbb{C})$; the ring of quaternions. Is it commutative?
(b) Define the conjugate of the quaternion q above to be $\bar{q}=a 1-b i-c j-d k$. Verify the relations

$$
q \bar{q}=\bar{q} q=\|q\|^{2} \cdot 1 \quad \text { where } \quad\|q\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

(c) Explain why every $q \neq 0$ is a unit and give a formula for its inverse q^{-1}.
(d) Observe that $\|q\|=\sqrt{\operatorname{det}(q)}$ and deduce that the norm is multiplicative:

$$
\|p q\|=\|p\| \cdot\|q\| \quad \forall p, q \in \mathbb{H} .
$$

Problem B. (Continuation of Problem A.) Let \mathcal{O} be the set of all quaternions $q=a 1+b i+c j+d k$ with integer coefficients $(a, b, c, d \in \mathbb{Z})$.
(a) Show that \mathcal{O} is a subring of \mathbb{H}.
(b) Prove that q is a unit of \mathcal{O} if and only if $\|q\|=1$. (Hint: Use $\mathrm{A}(\mathrm{d})$.)
(c) Conclude that $\mathcal{O}^{\times}=\{ \pm 1, \pm i, \pm j, \pm k\}$. (cf. Exc. 16 on p. 105.)

[^0]Problem C. Let G be a finite group, and let $\mathbb{C}[G]$ denote the set of all functions $f: G \rightarrow \mathbb{C}$. Addition on $\mathbb{C}[G]$ is defined by $(f+g)(x)=f(x)+g(x)$, whereas multiplication is given by so-called convolution:

$$
(f \star g)(x):=\sum_{t \in G} f(t) g\left(t^{-1} x\right)=\sum_{t \in G} f\left(x t^{-1}\right) g(t) .
$$

(a) Check the second equality in the line above. (Hint: Substitute $\tau=t^{-1} x$.)
(b) For each $a \in G$ let δ_{a} denote the function with $\delta_{a}(a)=1$ and $\delta_{a}(x)=0$ for all $x \neq a$. Prove the relation

$$
\delta_{a} \star \delta_{b}=\delta_{a b} \quad \forall a, b \in G
$$

(c) Infer from (b) that $\mathbb{C}[G]$ is a ring. What is its multiplicative identity $1_{\mathbb{C}[G]}$? (Hint: Any f can be expanded as a linear combination $f=\sum_{a \in G} f(a) \delta_{a}$.)

[^0]: ${ }^{1}$ Do number 3 first - you will need the result to do exercise 1 next.

