Due Friday January 26th by 5PM in your TA's box

From Lauritzen's book:

- Exercises 3.6 (starting page 138): 4, 9, 11, 12, 14, 26

Problem A. Let R and S be any two rings. Consider the direct product

$$
R \times S=\{(r, s): r \in R, \quad s \in S\}
$$

equipped with componentwise addition and multiplication. That is,

- $(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right)$,
- $(r, s) \cdot\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$.
(a) Verify that $R \times S$ is a ring, and that it is commutative precisely when both R and S are commutative. Find the neutral elements $0_{R \times S}$ and $1_{R \times S}$.
(b) Check that (r, s) is a unit of $R \times S$ if and only if $r \in R^{\times}$and $s \in S^{\times}$.
(c) Explain why $R \times S$ has zero-divisors if R and S are nonzero rings.
(d) Let $\pi: R \times S \rightarrow R$ be the projection map $\pi((r, s))=r$. Show that π is a surjective ring homomorphism and find its kernel.
(e) Suppose R and S both have positive characteristic. Prove that

$$
\operatorname{char}(R \times S)=\mathrm{LCM}(\operatorname{char}(R), \operatorname{char}(S)) .
$$

Problem B. Let R be a domain, and let $S \subset R \backslash\{0\}$ be a multiplicative subset. (That is S is closed under multiplication and $1 \in S$.) Introduce the following subset of the fraction field.

$$
S^{-1} R=\left\{\frac{r}{s}: r \in R, \quad s \in S\right\}
$$

(a) Check that $S^{-1} R$ is a subring of the fraction field $\operatorname{Frac}(R)$.
(b) Let $i: R \rightarrow S^{-1} R$ be the homomorphism $i(r)=\frac{r}{1}$. Show that all elements of the form $i(s)=\frac{s}{1}$ with $s \in S$ are units in $S^{-1} R$.
(c) Suppose $\varphi: R \rightarrow R^{\prime}$ is a homomorphism for which $\varphi(S) \subset\left(R^{\prime}\right)^{\times}$. Prove that there is a unique homomorphism $\bar{\varphi}: S^{-1} R \rightarrow R^{\prime}$ such that $\varphi=\bar{\varphi} \circ i$.

