From Lauritzen’s book:

- Exercises 3.6 (starting page 138): 4, 9, 11, 12, 14, 26

Problem A. Let \(R \) and \(S \) be any two rings. Consider the direct product

\[R \times S = \{ (r, s) : r \in R, \ s \in S \} \]

equipped with componentwise addition and multiplication. That is,

\[\begin{align*}
(r, s) + (r', s') &= (r + r', s + s'), \\
(r, s) \cdot (r', s') &= (rr', ss').
\end{align*} \]

(a) Verify that \(R \times S \) is a ring, and that it is commutative precisely when both \(R \) and \(S \) are commutative. Find the neutral elements \(0_{R \times S} \) and \(1_{R \times S} \).

(b) Check that \((r, s)\) is a unit of \(R \times S \) if and only if \(r \in R \times \) and \(s \in S \times \).

(c) Explain why \(R \times S \) has zero-divisors if \(R \) and \(S \) are nonzero rings.

(d) Let \(\pi : R \times S \to R \) be the projection map \(\pi((r, s)) = r \). Show that \(\pi \) is a surjective ring homomorphism and find its kernel.

(e) Suppose \(R \) and \(S \) both have positive characteristic. Prove that

\[\text{char}(R \times S) = \text{LCM}(\text{char}(R), \text{char}(S)). \]

Problem B. Let \(R \) be a domain, and let \(S \subset R \setminus \{0\} \) be a multiplicative subset. (That is \(S \) is closed under multiplication and \(1 \in S \).) Introduce the following subset of the fraction field.

\[S^{-1}R = \{ \frac{r}{s} : r \in R, \ s \in S \}. \]

(a) Check that \(S^{-1}R \) is a subring of the fraction field \(\text{Frac}(R) \).
(b) Let \(i : R \to S^{-1}R \) be the homomorphism \(i(r) = \frac{r}{1} \). Show that all elements of the form \(i(s) = \frac{s}{1} \) with \(s \in S \) are units in \(S^{-1}R \).

(c) Suppose \(\varphi : R \to R' \) is a homomorphism for which \(\varphi(S) \subset (R')^\times \). Prove that there is a unique homomorphism \(\bar{\varphi} : S^{-1}R \to R' \) such that \(\varphi = \bar{\varphi} \circ i \).