MATH 103B, WINTER 2018

Modern Algebra II, HW 2

Due Friday January 26th by 5PM in your TA's box

From Lauritzen's book:

• Exercises <u>3.6</u> (starting page 138): 4, 9, 11, 12, 14, 26

Problem A. Let R and S be any two rings. Consider the direct product

$$R\times S=\{(r,s):r\in R,\ s\in S\}$$

equipped with componentwise addition and multiplication. That is,

- (r,s) + (r',s') = (r+r',s+s'),
- $(r,s) \cdot (r',s') = (rr',ss').$
- (a) Verify that $R \times S$ is a ring, and that it is commutative precisely when both R and S are commutative. Find the neutral elements $0_{R \times S}$ and $1_{R \times S}$.
- (b) Check that (r, s) is a unit of $R \times S$ if and only if $r \in R^{\times}$ and $s \in S^{\times}$.
- (c) Explain why $R \times S$ has zero-divisors if R and S are nonzero rings.
- (d) Let $\pi : R \times S \to R$ be the projection map $\pi((r, s)) = r$. Show that π is a surjective ring homomorphism and find its kernel.
- (e) Suppose R and S both have positive characteristic. Prove that

$$\operatorname{char}(R \times S) = \operatorname{LCM}(\operatorname{char}(R), \operatorname{char}(S)).$$

Problem B. Let R be a domain, and let $S \subset R \setminus \{0\}$ be a multiplicative subset. (That is S is closed under multiplication and $1 \in S$.) Introduce the following subset of the fraction field.

$$S^{-1}R = \{\frac{r}{s} : r \in R, s \in S\}.$$

(a) Check that $S^{-1}R$ is a subring of the fraction field Frac(R).

- (b) Let $i: R \to S^{-1}R$ be the homomorphism $i(r) = \frac{r}{1}$. Show that all elements of the form $i(s) = \frac{s}{1}$ with $s \in S$ are units in $S^{-1}R$.
- (c) Suppose $\varphi : R \to R'$ is a homomorphism for which $\varphi(S) \subset (R')^{\times}$. Prove that there is a unique homomorphism $\bar{\varphi} : S^{-1}R \to R'$ such that $\varphi = \bar{\varphi} \circ i$.