MATH 103B, WINTER 2018

Modern Algebra II, HW 3

Due Friday February 2nd by 5PM in your TA's box

From Lauritzen's book:

• Exercises <u>3.6</u> (starting page 138): 5, 8, 10, 16, 17

Problem A. We introduce the following subset of complex numbers

$$\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}.$$

- (a) Check that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} and find its units.
- (b) Consider the principal ideal $(1 + \sqrt{-5})$. Show that the unique ring homomorphism

$$\varphi:\mathbb{Z}\longrightarrow\mathbb{Z}[\sqrt{-5}]/(1+\sqrt{-5})$$

given by $\varphi(a) = a + (1 + \sqrt{-5})$ is surjective.

(c) Prove that $\ker(\varphi) = 6\mathbb{Z}$ and conclude that $\mathbb{Z}[\sqrt{-5}]/(1+\sqrt{-5}) \simeq \mathbb{Z}/6\mathbb{Z}$.

Problem B. Let $\mathcal{C}(\mathbb{R})$ be the ring of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ with addition and multiplication defined pointwise. I.e.,

$$(f+g)(x) = f(x) + g(x)$$
 $(fg)(x) = f(x)g(x).$

(a) For every subset $X \subset \mathbb{R}$ consider the subset of functions vanishing on X,

$$I_X = \{ f \in \mathcal{C}(\mathbb{R}) : f(x) = 0 \ \forall x \in X \}.$$

Show that I_X is an ideal of $\mathcal{C}(\mathbb{R})$.

(b) Suppose we have an inclusion $Y \subset X$. Explain why $I_X \subset I_Y$, and use this observation to construct an increasing chain of ideals

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots \subsetneq I_i \subsetneq \cdots$$

Conclude that $\mathcal{C}(\mathbb{R})$ is <u>not</u> a noetherian ring (cf. exc. 3.6.10(i)).

(c) Take X to be a singleton (i.e., a set containing exactly one real number). Prove that the quotient ring $\mathcal{C}(\mathbb{R})/I_X$ is isomorphic to \mathbb{R} . Conclude that I_X is a maximal ideal.

Problem C. Let R and S be commutative rings, and consider the product ring $R \times S$ (cf. Problem A on HW2). Let $\pi_R : R \times S \to R$ be the projection map given by $\pi_R((r, s)) = r$ and define $\pi_S : R \times S \to S$ analogously.

- (a) Let $I \subset R \times S$ be an ideal. Show that its two images $\pi_R(I)$ and $\pi_S(I)$ are ideals in R and S respectively. (For example, $\pi_R(I)$ consists of all $r \in R$ such that $(r, \star) \in I$ for some $\star \in S$.)
- (b) Prove that $I = \pi_R(I) \times \pi_S(I)$. (The key point is the inclusion \supset which uses the ideal property of I. Hint: $(r, s) = (1, 0)(r, \star) + (0, 1)(*, s)$.)
- (c) Deduce that there is an isomorphism of rings

$$(R \times S)/I \xrightarrow{\sim} R/\pi_R(I) \times S/\pi_S(I).$$