From Lauritzen's book:

- Exercises 3.6 (starting page 138): 5, 8, 10, 16, 17

Problem A. We introduce the following subset of complex numbers

$$
\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} .
$$

(a) Check that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} and find its units.
(b) Consider the principal ideal $(1+\sqrt{-5})$. Show that the unique ring homomorphism

$$
\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}[\sqrt{-5}] /(1+\sqrt{-5})
$$

given by $\varphi(a)=a+(1+\sqrt{-5})$ is surjective.
(c) Prove that $\operatorname{ker}(\varphi)=6 \mathbb{Z}$ and conclude that $\mathbb{Z}[\sqrt{-5}] /(1+\sqrt{-5}) \simeq \mathbb{Z} / 6 \mathbb{Z}$.

Problem B. Let $\mathcal{C}(\mathbb{R})$ be the ring of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with addition and multiplication defined pointwise. I.e.,

$$
(f+g)(x)=f(x)+g(x) \quad(f g)(x)=f(x) g(x)
$$

(a) For every subset $X \subset \mathbb{R}$ consider the subset of functions vanishing on X,

$$
I_{X}=\{f \in \mathcal{C}(\mathbb{R}): f(x)=0 \quad \forall x \in X\}
$$

Show that I_{X} is an ideal of $\mathcal{C}(\mathbb{R})$.
(b) Suppose we have an inclusion $Y \subset X$. Explain why $I_{X} \subset I_{Y}$, and use this observation to construct an increasing chain of ideals

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots \subsetneq I_{i} \subsetneq \cdots .
$$

Conclude that $\mathcal{C}(\mathbb{R})$ is not a noetherian ring (cf. exc. 3.6.10(i)).
(c) Take X to be a singleton (i.e., a set containing exactly one real number). Prove that the quotient ring $\mathcal{C}(\mathbb{R}) / I_{X}$ is isomorphic to \mathbb{R}. Conclude that I_{X} is a maximal ideal.

Problem C. Let R and S be commutative rings, and consider the product ring $R \times S$ (cf. Problem A on HW2). Let $\pi_{R}: R \times S \rightarrow R$ be the projection map given by $\pi_{R}((r, s))=r$ and define $\pi_{S}: R \times S \rightarrow S$ analogously.
(a) Let $I \subset R \times S$ be an ideal. Show that its two images $\pi_{R}(I)$ and $\pi_{S}(I)$ are ideals in R and S respectively. (For example, $\pi_{R}(I)$ consists of all $r \in R$ such that $(r, \star) \in I$ for some $\star \in S$.)
(b) Prove that $I=\pi_{R}(I) \times \pi_{S}(I)$. (The key point is the inclusion \supset which uses the ideal property of I. Hint: $(r, s)=(1,0)(r, \star)+(0,1)(*, s)$.)
(c) Deduce that there is an isomorphism of rings

$$
(R \times S) / I \xrightarrow{\sim} R / \pi_{R}(I) \times S / \pi_{S}(I) .
$$

