Due Friday February 16th by 5PM in your TA's box

From Lauritzen's book:

- Exercises 3.6 (starting page 138): 27, 28, 32, 35, 36

Problem A. Let $\mathbb{Z}[\sqrt{-10}]=\{a+b \sqrt{-10}: a, b \in \mathbb{Z}\}$.
(a) Verify that $\mathbb{Z}[\sqrt{-10}]$ is a subring of \mathbb{C} and find its units.
(b) Explain in detail why the fraction field of $\mathbb{Z}[\sqrt{-10}]$ is isomorphic to

$$
\mathbb{Q}(\sqrt{-10})=\{a+b \sqrt{-10}: a, b \in \mathbb{Q}\}
$$

(c) Show that $2+\sqrt{-10}$ is an irreducible element of $\mathbb{Z}[\sqrt{-10}]$.
(d) Prove that $\mathbb{Z} / 14 \mathbb{Z} \xrightarrow{\sim} \mathbb{Z}[\sqrt{-10}] /(2+\sqrt{-10})$.
(e) Deduce from (d) that $2+\sqrt{-10}$ is not a prime element of $\mathbb{Z}[\sqrt{-10}]$.

Problem B. Introduce the complex number $\theta=\frac{1+\sqrt{-7}}{2}=\frac{1}{2}(1+i \sqrt{7})$.
(a) Check that $\theta^{2}-\theta+2=0$.
(b) Show that $\mathbb{Z}[\theta]=\{a+b \theta: a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}. Find $\mathbb{Z}[\theta]^{\times}$.
(c) Express the norm $N(a+b \theta)=|a+b \theta|^{2}$ as a quadratic form in a, b.
(d) Prove that $\mathbb{Z}[\theta] /(\theta)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$; conclude θ is a prime element.

Problem C. A commutative ring R is said to be Artinian if every decreasing chain of ideals

$$
I_{1} \supset I_{2} \supset I_{3} \supset \cdots
$$

stabilizes. That is, $I_{i}=I_{i+1}$ for all sufficiently large indices $i \geq 1$.
(a) Show that every finite ring (such as $\mathbb{Z} / N \mathbb{Z}$) is Artinian, but \mathbb{Z} is not.
(b) Suppose $R \neq\{0\}$ is an Artinian ring. Prove the existence of a nonzero ideal I which is minimal among all the nonzero ideals of R.
(c) Describe ${ }^{1}$ the minimal ideals of $\mathbb{Z} / N \mathbb{Z}$. Write them down for $N=60$.

[^0]
[^0]: ${ }^{1}$ All ideals have the form $M \mathbb{Z} / N \mathbb{Z}$ for some $M \mid N$. For which $M<N$ is the ideal minimal?

