
Math 103B, Winter 2018

Modern Algebra II, HW 6

Due Friday February 23rd by 5PM in your TA’s box

From Lauritzen’s book:

• Exercises 3.6 (starting page 138): 29, 30, 311, 33, 38

Problem A. Consider the subring Z[
√
−2] = {a+ b

√
−2 : a, b ∈ Z}.

(a) Show that N(a+ b
√
−2) = a2 + 2b2 defines an Euclidean function.

(b) Infer that Z[
√
−2] is a principal ideal domain.

(c) Find a pair of integers a, b such that

(3, 2 +
√
−2) = (a+ b

√
−2).

(Hint: Run the Euclidean algorithm for Z[
√
−2].)

Problem B. Suppose x, y ∈ Z satisfy the equation y2 = x3 − 1.

(a) Observe that x must be odd (and therefore y must be even). (Hint: If x

is even y2 ≡ −1 (mod 8) but squares are 0, 1, 4 modulo 8.)

(b) Verify that y+ i and y− i are coprime elements of Z[i]. (Hint: Suppose a

non-unit d divides both, hence their difference 2i = (1 + i)2. Deduce that

the prime element 1 + i divides d, and consequently 1 + i divides x since

(y + i)(y − i) = y2 + 1 = x3. (1)

Take norms to see that x must then be even, contradicting (a).)

(c) Using that Z[i] is a unique factorization domain, explain why y + i and

y − i are cubes in Z[i]. (Hint: The equation (1) shows y ± i are cubes up

to a unit. Note that all elements of 〈i〉 are cubes by inspection.)

1Hint: (1 +
√
−3)(1−

√
−3) = 4 = 2 · 2 shows 2 is not prime in Z[

√
−3]. Is 2 irreducible?
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(d) Write y + i = (a + bi)3 for suitable a, b ∈ Z. Expand the right-hand

side using the binomial theorem, compare real and imaginary parts, and

deduce that (a, b) = (0,−1).

(e) Conclude that (x, y) = (1, 0) is the only integer solution to y2 = x3 − 1.

Problem C. Suppose x, y, z ∈ Z satisfy the equation x3 +y3 + z3 = 0. Here we

show that at least one of them must be a multiple2 of 3. I.e, xyz ≡ 0 (mod 3).

(a) Consider the Eisenstein integers Z[ω] where ω = e2πi/3 = 1
2 (−1 + i

√
3).

Show that there is an isomorphism

Z/3Z ∼−→ Z[ω]/(1− ω) a+ 3Z 7→ a+ (1− ω)

and deduce that π := 1− ω is a prime element of Z[ω]. (cf. 3.6.30(iv).)

(b) Use (a) to show that every element γ ∈ Z[ω] is congruent to either 0 or

±1 modulo π. In other words γ ≡ 0,±1 (mod π).

(c) Assuming π - γ show that γ3 ≡ ±1 (mod π4). (Hint: This is the key step.

Replacing γ by −γ we may assume γ ≡ 1 (mod π) by part (b). Substitute

γ = 1 + πx in the factorization

γ3 − 1 = (γ − 1)(γ − ω)(γ − ω2) (2)

to see that γ3−1 = π3x(x+1)(x−ω2); this uses the relation 1−ω2 = −ω2π

which you should check. Now use (b) to verify that at least one of the

factors in x(x+ 1)(x− ω2) must be a multiple of π.)

(d) Suppose x, y, z are all not divisible by 3. View the equation x3+y3+z3 = 0

modulo π4 to get a contradiction. (Hint: First note that π - x etc., since

3 ∼ π2. Using (c) we obtain ±1 ± 1 ± 1 ≡ 0 (mod π4) for all possible

sign combinations. This leads to either ±1 ≡ 0 (mod π4) – which cannot

happen since π is not a unit – or ±3 ≡ 0 (mod π4). The latter cannot

happen either since 3 ∼ π2.)

2In fact xyz = 0 but this requires more work (cf. ”Fermat’s Last Theorem” on p. 137).
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