From Lauritzen's book:

Problem A. Let $\mathbb{Z}[\omega]$ be the ring of Eisenstein integers. Here $\omega=\frac{1}{2}(-1+i \sqrt{3})$.
(a) Verify that every prime number $p \equiv 2(\bmod 3)$ remains prime in $\mathbb{Z}[\omega]$. (Hint: If not, taking norms yields $p=a^{2}-a b+b^{2} \equiv(a+b)^{2}(\bmod 3)$.)
(b) Check that $p=3$ and $(1-\omega)^{2}$ are associated elements of $\mathbb{Z}[\omega]$. (cf. 3.5.1.)
(c) In this question let $p \equiv 1(\bmod 3)$ be a prime number. If you are familiar with the quadratic reciprocity law (p. 170), show that the congruence

$$
x^{2} \equiv-3(\bmod p)
$$

has a solution $x \in \mathbb{Z}$. If not, accept this as a fact. Use this fact to show that p does not remain prime in $\mathbb{Z}[\omega]$.

Problem B. Let R be a commutative ring and consider the ring $R \llbracket X \rrbracket$ of formal power series $f=\sum_{i=0}^{\infty} a_{i} X^{i}$ with coefficients $a_{i} \in R$. (Here "formal" means you ignore questions about convergence ${ }^{1}$ and identify f with the sequence of coefficients $\left(a_{0}, a_{1}, \ldots\right)$. These are added componentwise, and multiplied by the rule

$$
\left(a_{0}, a_{1}, \ldots\right) \cdot\left(b_{0}, b_{1}, \ldots\right)=\left(c_{0}, c_{1}, \ldots\right) \quad c_{n}:=\sum_{i+j=n} a_{i} b_{j}
$$

which reflects how convergent power series over \mathbb{C} multiply.)
(a) Show that $R \llbracket X \rrbracket$ is a ring containing $R[X]$ as a subring.
(b) Prove that $f=\sum_{i=0}^{\infty} a_{i} X^{i}$ is a unit of $R \llbracket X \rrbracket$ if and only if $a_{0} \in R^{\times}$.

[^0](c) If R is a field, deduce from (b) that $R \llbracket X \rrbracket$ is a local ring and (X) is its unique maximal ideal. (Hint: You may use the result in Problem B part (b) on HW4.)
(d) Let S be another commutative ring, and $\varphi: R \rightarrow S$ a homomorphism. Suppose $\alpha \in S$ is a nilpotent element (meaning $\alpha^{i}=0$ for some $i \geq 1$). Verify that there exists a unique homomorphism $\tilde{\varphi}: R \llbracket X \rrbracket \rightarrow S$ with the following two properties:
(i) $\tilde{\varphi}(a)=\varphi(a)$ for all $a \in R$;
(ii) $\tilde{\varphi}(X)=\alpha$.

Problem C. Consider the polynomial ring $\mathbb{Z}[X]$ in one variable over the integers. Fix a prime number p, and let (p, X) be the ideal of $\mathbb{Z}[X]$ generated by the two elements p and X.
(a) Check that (p, X) is a proper ideal, meaning $(p, X) \neq \mathbb{Z}[X]$. (Hint: Otherwise write $1=p f(X)+X g(X)$ and substitute $X=0$.)
(b) Give an isomorphism of rings

$$
\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z} \xrightarrow{\sim} \mathbb{Z}[X] /(p, X)
$$

and conclude that (p, X) is a maximal ideal of $\mathbb{Z}[X]$.
(c) Prove that (p, X) is not a principal ideal. (Hint: Say h generates the ideal. Writing p as a polynomial multiple of h shows h must be an integer by comparing degrees. Factoring $X=\left(a X^{m}+\cdots\right) h$ proves $h= \pm 1$ which violates (a).) Conclude $\mathbb{Z}[X]$ is not a PID.
(d) In this part consider the two principal ideals (X) and (p). Show that there are isomorphisms

$$
\mathbb{Z}[X] /(X) \simeq \mathbb{Z} \quad \mathbb{Z}[X] /(p) \simeq \mathbb{F}_{p}[X]
$$

and infer that both p and X are prime elements of $\mathbb{Z}[X]$.

[^0]: ${ }^{1}$ Convergence does not even make sense for an arbitrary ring R.

