Due Friday March 9th by 5PM in your TA's box

From Lauritzen's book:

Problem A. Let p be a prime and $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. The polynomial ring $\mathbb{F}_{p}[X]$ is a domain; consider its fraction field which is denoted by $\mathbb{F}_{p}(X)$.
(a) Explain why $\mathbb{F}_{p}(X)$ is an infinite field of characteristic p.
(b) Let $\varphi: \mathbb{F}_{p}(X) \rightarrow \mathbb{F}_{p}(X)$ be the Frobenius homomorphism $\left(r \mapsto r^{p}\right)$. Why is φ injective? Show that φ is not surjective by verifying that the element X is not in its image. (Hint: Suppose $X=\left(\frac{f}{g}\right)^{p}$ for some $f, g \in \mathbb{F}_{p}[X]$. Differentiate both sides of the relation $f^{p}=X g^{p}$ and deduce that $g=0$.)

Problem B. We define the content of a nonzero polynomial $f \in \mathbb{Z}[X]$ to be the GCD of all its coefficients. That is, if $f=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ we let

$$
\operatorname{cont}(f):=\operatorname{GCD}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{>0}
$$

We say $f \in \mathbb{Z}[X]$ is primitive if $\operatorname{cont}(f)=1$ (in other words if its coefficients a_{i} have no common factor >1).
(a) Let $f, g \in \mathbb{Z}[X]$ be primitive polynomials. Show that their product $f g$ is primitive. (Hint: Otherwise choose a prime p dividing all coefficients of $f g$. Let a_{r} be the first coefficient of f which is not a multiple of p; and let b_{s} be the first coefficient of g which is not a multiple of p. The coefficient of X^{r+s} in $f g$ is given by

$$
\sum_{i+j=r+s} a_{i} b_{j}
$$

In this sum the term $a_{r} b_{s}$ is not a multiple of p, but all other terms are divisible by p since either $i<r$ or $j<s$. This leads to a contradiction.)

[^0](b) Now let $f, g \in \mathbb{Z}[X]$ be arbitrary nonzero polynomials. Use the special case in (a) to show that more generally
\[

$$
\begin{equation*}
\operatorname{cont}(f g)=\operatorname{cont}(f) \operatorname{cont}(g) \tag{1}
\end{equation*}
$$

\]

(Hint: Note that $\operatorname{cont}(f)^{-1} f$ is primitive.)
(c) We extend the definition of content to $\mathbb{Q}[X]$ as follows. For a nonzero $f \in \mathbb{Q}[X]$ choose an $N \in \mathbb{Z}_{>0}$ such that $N f \in \mathbb{Z}[X]$ and let

$$
\operatorname{cont}(f):=N^{-1} \operatorname{cont}(N f) \in \mathbb{Q}_{>0}
$$

Check that this is well-defined (that is independent of the choice of N) and that the relation (1) in (b) continues to hold for $f, g \in \mathbb{Q}[X]$.
(d) Observe that if $f \in \mathbb{Q}[X]$ is monic its content is of the form $\frac{1}{c}$ for some $c \in \mathbb{Z}_{>0}$. (Hint: N is the leading coefficient of $N f$ and therefore a multiple $c \cdot \operatorname{cont}(N f)$.) Moreover, if $\operatorname{cont}(f)=1$ then $f \in \mathbb{Z}[X]$.
(e) (A very useful application!) Suppose the polynomial $h \in \mathbb{Z}[X]$ factors as $h=f g$ with $f, g \in \mathbb{Q}[X]$ both monic. Then necessarily $f, g \in \mathbb{Z}[X]$. (Hint: Observe that h is monic too and has integer coefficients; therefore it has content $1=\operatorname{cont}(f) \operatorname{cont}(g)=\frac{1}{c} \cdot \frac{1}{d}$ by (c) and (d). We conclude that $c=d=1$.)

The equation (1) for $\mathbb{Q}[X]$ is known as the Gauss Lemma. If you're interested you can try to mimic the above arguments with \mathbb{Z} replaced by a UFD R (this is not required for full credit).

[^0]: ${ }^{1}$ Hint: Try something of the form $\mathbb{F}_{2}[X] /\left(X^{3}+a X^{2}+b X+c\right)$ for suitable $a, b, c \in \mathbb{F}_{2}$.

