MATH 103B, WINTER 2018

Modern Algebra II, HW 9

Due Friday March 16th by 5PM in your TA's box

From Lauritzen's book:

• Exercises <u>4.10</u> (starting page 179): 26, 28¹, 29(iii+iv), 30, 38², 44

Problem A. Let $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ as usual.

(a) Check that the polynomial $X^3 - X^2 + 1$ in $\mathbb{F}_3[X]$ is irreducible (by verifying it has no roots in \mathbb{F}_3). Conclude that

$$\mathbb{F}_3[X]/(X^3 - X^2 + 1)$$

is a finite field with exactly 27 elements.

(b) Factor $X^3 + X^2 + 1$ into irreducible polynomials of $\mathbb{F}_3[X]$ (note the sign change of the X^2 -coefficient) and produce an isomorphism

$$\mathbb{F}_3[X]/(X^3 + X^2 + 1) \xrightarrow{\sim} \mathbb{F}_3 \times \mathbb{F}_9$$

for some finite field \mathbb{F}_9 with exactly 9 elements. (Hint: Chinese.)

Problem B. Let F be a finite field of characteristic p (a prime number).

- (a) Suppose $f \in F[X]$ has derivative f' = 0. Show that f is a polynomial in X^p . (Hint: If $f = a_0 + a_1X + \cdots + a_nX^n$ show that $a_i = 0$ unless p|i.)
- (b) Let E be a field containing F as a subfield, and assume f is irreducible in F[X]. Prove that f has no repeated roots in E. (Hint: Suppose α ∈ E is a root of f with multiplicity > 1. Then f'(α) = 0 shows f and f' are not coprime in F[X], and therefore f|f' since f is assumed to be irreducible. Comparing degrees shows f' = 0. Invoke part (a) and write

$$f = b_0^p + b_1^p X^p + \dots + b_r^p X^{pr} = (b_0 + b_1 X + \dots + b_r X^r)^p$$

¹Hint: In part (iv) explain why it suffices to check $\alpha^3 \neq 1$ and $\alpha^5 \neq 1$ – and check this. ²Hint: In part (ii) first observe that $p^r - 1$ divides $p^s - 1$ when r|s. Then cancel an X.

using that the Frobenius map $\varphi : F \longrightarrow F$ taking $b \mapsto b^p$ is surjective since $|F| < \infty$. The last equation above gives a contradiction. Why?)

Problem C. Please submit your teaching evaluations, thank you!