From Lauritzen's book:

- Exercises $\underline{4.10}$ (starting page 179): 26, 281, 29(iii+iv), 30, 38², 44

Problem A. Let $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ as usual.
(a) Check that the polynomial $X^{3}-X^{2}+1$ in $\mathbb{F}_{3}[X]$ is irreducible (by verifying it has no roots in \mathbb{F}_{3}). Conclude that

$$
\mathbb{F}_{3}[X] /\left(X^{3}-X^{2}+1\right)
$$

is a finite field with exactly 27 elements.
(b) Factor $X^{3}+X^{2}+1$ into irreducible polynomials of $\mathbb{F}_{3}[X]$ (note the sign change of the X^{2}-coefficient) and produce an isomorphism

$$
\mathbb{F}_{3}[X] /\left(X^{3}+X^{2}+1\right) \xrightarrow{\sim} \mathbb{F}_{3} \times \mathbb{F}_{9}
$$

for some finite field \mathbb{F}_{9} with exactly 9 elements. (Hint: Chinese.)

Problem B. Let F be a finite field of characteristic p (a prime number).
(a) Suppose $f \in F[X]$ has derivative $f^{\prime}=0$. Show that f is a polynomial in X^{p}. (Hint: If $f=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ show that $a_{i}=0$ unless $p \mid i$.)
(b) Let E be a field containing F as a subfield, and assume f is irreducible in $F[X]$. Prove that f has no repeated roots in E. (Hint: Suppose $\alpha \in E$ is a root of f with multiplicity >1. Then $f^{\prime}(\alpha)=0$ shows f and f^{\prime} are not coprime in $F[X]$, and therefore $f \mid f^{\prime}$ since f is assumed to be irreducible. Comparing degrees shows $f^{\prime}=0$. Invoke part (a) and write

$$
f=b_{0}^{p}+b_{1}^{p} X^{p}+\cdots+b_{r}^{p} X^{p r}=\left(b_{0}+b_{1} X+\cdots+b_{r} X^{r}\right)^{p}
$$

[^0]using that the Frobenius map $\varphi: F \longrightarrow F$ taking $b \mapsto b^{p}$ is surjective since $|F|<\infty$. The last equation above gives a contradiction. Why?)

Problem C. Please submit your teaching evaluations, thank you!

[^0]: ${ }^{1}$ Hint: In part (iv) explain why it suffices to check $\alpha^{3} \neq 1$ and $\alpha^{5} \neq 1$ - and check this.
 ${ }^{2}$ Hint: In part (ii) first observe that $p^{r}-1$ divides $p^{s}-1$ when $r \mid s$. Then cancel an X.

