Due Wednedsday October 17th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 1, pages 44-45):
$2,6,7,9,10,11,13$

Problem A. Consider a monic polynomial equation with integer coeffcients

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 .
$$

Suppose $x=\frac{r}{s}$ is a rational root. Show that x is necessarily an integer which divides the constant term a_{0}. (Hint: You may assume $\operatorname{GCD}(r, s)=1$. Now use Euclid's lemma on page 56 after multiplying the equation by s^{n}.)

Problem B. Find $\operatorname{GCD}(5183,4757)$ and express it as a linear combination $5183 x+4757 y$ for a suitable pair of integers x, y. Then find all pairs of integers (x, y) satisfying both conditions below.

$$
\mathrm{GCD}(5183,4757)=5183 x+4757 y, \quad 0<x<200
$$

Problem C. Recall that the sequence of Fibonacci numbers $\left(F_{n}\right)_{n \geq 0}$ is defined recursively by

$$
F_{n}=F_{n-1}+F_{n-2} \quad \forall n>1
$$

with initial values $F_{0}=0$ and $F_{1}=1$. List the first ten Fibonacci numbers.
(a) Use induction on n to prove the so-called Cassini identity -

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} \quad \forall n>0 .
$$

(b) Deduce from (a) that any two neighboring Fibonacci numbers are coprime:

$$
\operatorname{GCD}\left(F_{n-1}, F_{n}\right)=1 \quad \forall n>0
$$

