Math 104A, Fall 2018

NUMBER THEORY, HW 3

Due Wednedsday October 24th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

Exercises (Section 2, pages 72–73):
1, 2, 3, 4, 5, 6, 9, 18¹

Problem A. As in exercise 18 let e_p denote the exponent of p in the prime factorization of $n! = 1 \cdot 2 \cdot 3 \cdots n$.

- (a) Show that among $\{1, 2, 3, ..., n\}$ there are exactly $\left\lfloor \frac{n}{p^r} \right\rfloor$ multiples of p^r . Here the brackets $[\bullet]$ means taking the floor – and r is any positive integer.
- (b) Infer that among $\{1, 2, 3, ..., n\}$ there are exactly $\left[\frac{n}{p^r}\right] \left[\frac{n}{p^{r+1}}\right]$ numbers with exactly r factors of p in the prime factorization.
- (c) Conclude that de Polignac's formula holds that is

$$e_p = \sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right].$$

(Why is this actually a finite sum?)

(d) Expanding n in base p as $n = a_0 + a_1 p + a_2 p^2 + \cdots$ with non-negative coefficients $a_i < p$ deduce from (c) that

$$e_p = \frac{n-s}{p-1}$$
 $s := a_0 + a_1 + a_2 + \cdots$

Problem B. Let p be a prime and r any integer in the range 0 < r < p. Prove that p divides the binomial coefficient $\binom{p}{r}$. (Hint: Apply Euclid's lemma to the identity

$$r!\binom{p}{r} = p(p-1)\cdots(p-r+1).)$$

Give an example showing this fails without the assumption that p is prime.

¹Do Problem A below first.