Due Wednedsday October 24th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 2, pages 72-73):

1, 2, 3, 4, 5, 6, 9, 18^{1}

Problem A. As in exercise 18 let e_{p} denote the exponent of p in the prime factorization of $n!=1 \cdot 2 \cdot 3 \cdots n$.
(a) Show that among $\{1,2,3, \ldots, n\}$ there are exactly $\left[\frac{n}{p^{r}}\right]$ multiples of p^{r}. Here the brackets [•] means taking the floor - and r is any positive integer.
(b) Infer that among $\{1,2,3, \ldots, n\}$ there are exactly $\left[\frac{n}{p^{r}}\right]-\left[\frac{n}{p^{r+1}}\right]$ numbers with exactly r factors of p in the prime factorization.
(c) Conclude that de Polignac's formula holds - that is

$$
e_{p}=\sum_{r=1}^{\infty}\left[\frac{n}{p^{r}}\right]
$$

(Why is this actually a finite sum?)
(d) Expanding n in base p as $n=a_{0}+a_{1} p+a_{2} p^{2}+\cdots$ with non-negative coefficients $a_{i}<p$ deduce from (c) that

$$
e_{p}=\frac{n-s}{p-1} \quad s:=a_{0}+a_{1}+a_{2}+\cdots
$$

Problem B. Let p be a prime and r any integer in the range $0<r<p$. Prove that p divides the binomial coefficient $\binom{p}{r}$. (Hint: Apply Euclid's lemma to the identity

$$
\left.r!\binom{p}{r}=p(p-1) \cdots(p-r+1) .\right)
$$

Give an example showing this fails without the assumption that p is prime.

[^0]
[^0]: ${ }^{1}$ Do Problem A below first.

