Due Wednedsday October 31st by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 2, pages 72-73):
$8,11^{1}, 12,14,15,16,17$
- Exercises (Section 3, pages 96-97):

12

Problem A.

(a) Is there a Pythagorean triple (x, y, z) with hypotenuse $z=71$? (Hint: Observe that any number of the form $a^{2}+b^{2}$ is never congruent to 3 modulo 4 . Why not?)
(b) Find a Pythagorean triple (x, y, z) with hypotenuse $z=73$.

Problem B. (This exercise establishes the converse to Problem B on HW3.) Let $p>1$ be an integer with the property that p divides $\binom{p}{r}$ for all $0<r<p$. Prove that p must be a prime number. (Hint: Otherwise pick a prime number $\ell \mid p$ satisfying $0<\ell<p$. Then by assumption $p\binom{p}{\ell}$. Now justify and use the identity

$$
\ell!\cdot \frac{1}{p}\binom{p}{\ell}=(p-1)(p-2) \cdots(p-\ell+1)
$$

Why can ℓ not divide any of the factors on the right?)

[^0]
[^0]: ${ }^{1}$ Show that $n=p^{\ell-1}$ for primes p and ℓ (and conversely).

