Math 104A, Fall 2018

Number Theory, HW 4

Due Wednedsday October 31st by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 2, pages 72–73):
 8, 11¹, 12, 14, 15, 16, 17
- Exercises (Section 3, pages 96–97): 12

Problem A.

- (a) Is there a Pythagorean triple (x, y, z) with hypotenuse z = 71? (Hint: Observe that any number of the form $a^2 + b^2$ is never congruent to 3 modulo 4. Why not?)
- (b) Find a Pythagorean triple (x, y, z) with hypotenuse z = 73.

Problem B. (This exercise establishes the <u>converse</u> to Problem B on HW3.) Let p > 1 be an integer with the property that p divides $\binom{p}{r}$ for all 0 < r < p. Prove that p must be a prime number. (Hint: Otherwise pick a prime number $\ell | p$ satisfying $0 < \ell < p$. Then by assumption $p | \binom{p}{\ell}$. Now justify and use the identity

$$\ell! \cdot \frac{1}{p} \binom{p}{\ell} = (p-1)(p-2)\cdots(p-\ell+1).$$

Why can ℓ <u>not</u> divide any of the factors on the right?)

¹Show that $n = p^{\ell-1}$ for primes p and ℓ (and conversely).