Math 104A, Fall 2018
Number Theory, HW 5

Due Wednedsday November 7th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 5, pages 150-151):

1, 2, 3, 4, 5, 6, 7, 9^{1}

Problem A.

(a) Show that squares are congruent to either 0 or 1 modulo 4 .
(b) Deduce from (a) that $a^{2}+b^{2} \equiv 3(\bmod 4)$ has no solutions $a, b \in \mathbb{Z}$.
(c) By a case-by-case analysis similar to (a) and (b) show that the congruence

$$
a^{2}+b^{2}+c^{2} \equiv 7(\bmod 8)
$$

has no solutions $a, b, c \in \mathbb{Z}$.
(d) In continuation of (c) also verify that

$$
a^{2}+b^{2}+c^{2} \equiv 0(\bmod 8) \Longrightarrow a, b, c \text { are even. }
$$

(e) Use (c) and (d) to prove that an integer of the form $4^{m}(8 n+7)$ cannot be written as a sum of three squares ${ }^{2}$. (Hint: Use induction on m.)

Problem B. Fix an odd integer $m>0$ and any two $a, b \in \mathbb{Z}$.
(a) In analogy to Problem A on HW1, show that the quadratic congruence

$$
\begin{equation*}
x^{2}+a x+b \equiv 0(\bmod m) \tag{1}
\end{equation*}
$$

has integer solutions if and only if $x^{2} \equiv a^{2}-4 b(\bmod m)$ does.

- Continued on the next page.

[^0](b) Assuming m is prime, explain why (1) can have at most two solutions modulo m. (Hint: Reduce to the case $a=0$ and try to show that
$$
y^{2} \equiv x^{2}(\bmod m) \Longrightarrow y \equiv \pm x(\bmod m)
$$
by applying Euclid's lemma to the factorization $\left.y^{2}-x^{2}=(y-x)(y+x).\right)$
(c) List all solutions modulo 8 to the congruence $x^{2} \equiv 1(\bmod 8)$.

[^0]: ${ }^{1}$ Primes >3 are $\equiv \pm 1(\bmod 6)$; show that $6\left(p_{1} \cdots p_{n}\right)-1$ must have a prime factor $\equiv-1$.
 ${ }^{2}$ Legendre's three-square theorem says that all other numbers can be written as $a^{2}+b^{2}+c^{2}$.

