Math 104A, Fall 2018
Number Theory, HW 6

Due Wednedsday November 14th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 5, pages 150-151):
$11(a+b+c) \longleftarrow$ not part (d)
- Exercises (Section 6, pages 170-171):

1, 3, 6, 7, 12, 13

- Exercises (Section 7, pages 190-191):

1, 2

Problem A. (These questions arose in class.) Let $a, b \in \mathbb{Z}$ have residue classes $[a]$ and $[b]$ modulo some fixed $m>1$. Consider the set of all products

$$
[a] \star[b]:=\{x y: x \in[a] \wedge y \in[b]\} .
$$

One question asked was essentially whether this defines a multiplication on \mathbb{Z}_{m}.
(a) Prove that there is always an inclusion $[a] \star[b] \subseteq[a b]$.
(b) Show that $[0] \star[0] \neq[0]$ and conclude that $[0] \star[0]$ is not a residue class modulo m (but rather a residue class modulo m^{2}).
(c) How about addition - is it true that

$$
[a+b] \stackrel{?}{=}\{x+y: x \in[a] \wedge y \in[b]\}
$$

Prove it or give a counterexample.

