Math 104A, Fall 2018

Number Theory, HW 7

Due Wednedsday November 21st by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 6, pages 170-171):

4 (see Definition 6.16 on page 160)

- Exercises (Section 7, pages 190-191):
$3,4,5,6,7,8,12,13(a+b+c)$

Problem A. Fix an integer $a>1$. A composite number $m>1$ is called a pseudo-prime with respect to a if $\operatorname{GCD}(a, m)=1$ and $a^{m-1} \equiv 1(\bmod m)$.
(a) Show that 561 is a pseudo-prime with respect to any a which is coprime to 561 . (Such numbers are called Carmichael numbers.)
(b) Let $p>2$ be any prime not dividing $a\left(a^{2}-1\right)$ and consider the number

$$
m=\frac{a^{2 p}-1}{a^{2}-1}=\frac{a^{p}-1}{a-1} \cdot \frac{a^{p}+1}{a+1}
$$

The following steps will show that m is a pseudo-prime with respect to a.
(1) Use the above factorization (and the assumption that p is odd) to check that m is composite - and coprime to a.
(2) Verify that

$$
\left(a^{2}-1\right)(m-1)=a^{2 p}-a^{2}=a\left(a^{p-1}-1\right)\left(a^{p}+a\right)
$$

is divisible by $2 p\left(a^{2}-1\right)$ and conclude that $2 p$ divides $m-1$.
(3) Note that $a^{2 p}=1+m\left(a^{2}-1\right) \equiv 1(\bmod m)$ and infer from (2) that

$$
a^{m-1} \equiv 1(\bmod m)
$$

which shows m is a pseudo-prime relative to a.
[Letting p vary yields infinitely many pseudo-primes relative to a given a.]

