Math 104A, Fall 2018
Number Theory, HW 8

Due Wednedsday November 28th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 7, pages 190-191):

11, 15

- Exercises (Section 8, pages 220-221):
$6,7,8(\leftarrow$ feel free to use the result of Problem E for exc. 8 part (a))

Problem A. The Möbius function μ is defined on integers $n>0$ as follows. If $n=p_{1} p_{2} \cdots p_{r}$ is a product of $r \underline{\text { distinct }}$ primes let $\mu(n)=(-1)^{r}$. Otherwise, if n is not square-free, let $\mu(n)=0$. Note that by convention $\mu(1)=1$.
(a) Check that μ is a multiplicative function. That is,

$$
\mu(m n)=\mu(m) \mu(n) \quad \text { provided } \quad \operatorname{GCD}(m, n)=1
$$

(b) Prove the identity below for all positive integers n.

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & n=1 \\ 0, & n \neq 1\end{cases}
$$

(Here the sum $\sum_{d \mid n}$ ranges over all positive divisors d of n.)
Hint: $\sum_{i=0}^{r}\binom{r}{i}(-1)^{i}=(1-1)^{r}=0$ for $r>0$ by the binomial formula.

Problem B.

(a) Let $n>1$ be an integer for which Wilson's congruence holds. That is,

$$
(n-1)!\equiv-1(\bmod n) .
$$

Prove that n is necessarily a prime number.
(b) (Based on a question asked in class.) For an integer $m>1$ we let $\Phi(m)$ denote the set of integers $a \in\{1,2, \ldots, m-1\}$ such that $\operatorname{GCD}(a, m)=1$. Let $\Pi:=\prod_{a \in \Phi(m)} a$ denote their product. Is it true $\forall m$ that

$$
\Pi \equiv-1(\bmod m) ?
$$

Give a proof or a counterexample.

Problem C.

(a) Find all solutions $x \in \mathbb{Z}$ to the quadratic congruence $x^{2} \equiv-1(\bmod 5)$.
(b) Which of the quadratic congruences below have ${ }^{1}$ solutions? Explain.
(1) $x^{2} \equiv-1(\bmod 101)$
(2) $x^{2} \equiv-1(\bmod 103)$
(3) $x^{2}+2 x+2 \equiv 0(\bmod 89)$
(c) Compute the Legendre symbol $\left(\frac{3}{p}\right)$ for $p=5,7,11$.

Problem D.

(a) Express 89 as a sum of two squares: Find $a, b \in \mathbb{Z}$ such that $89=a^{2}+b^{2}$.
(b) Can the prime number 1999 be written as $a^{2}+b^{2}$?
(c) Which of the numbers below are sums of two squares? Explain.
(1) $a=2^{9} \cdot 3^{8} \cdot 5^{7} \cdot 7^{6}$
(2) $b=2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7^{5}$
(3) $c=2^{7} \cdot 3^{6} \cdot 5^{6} \cdot 7^{5}$
(4) $d=2^{5} \cdot 3^{8} \cdot 5^{9} \cdot 7^{4} \cdot 11^{2} \cdot 13^{6} \cdot 17^{3} \cdot 19^{8} \cdot 23^{2}$

Problem E. Let $a, b, c \in \mathbb{Z}$ be arbitrary integers, and let p be a prime. In this exercise we will show that the congruence $a x^{2}+b y^{2}+c z^{2} \equiv 0(\bmod p)$ has an integer solution $(x, y, z) \neq(0,0,0)$.
(a) Observe that we may assume $p \nmid a b c$ and $p>2$ - without loss of generality.

[^0](b) Introduce two finite sets of integers:
$$
X=\left\{a+b y^{2}: y=0,1, \ldots, \frac{p-1}{2}\right\} \quad Y=\left\{-c z^{2}: z=0,1, \ldots, \frac{p-1}{2}\right\} .
$$

Note that all elements of X are distinct modulo p. The same for Y.
(c) Use the pigeonhole principle to conclude that there must exist non-negative integers $y, z \leq \frac{p-1}{2}$ satisfying $a+b y^{2} \equiv-c z^{2}(\bmod p)$. [In other words the triple $(1, y, z)$ is a solution to our problem.]

[^0]: ${ }^{1}$ You are not required to find a solution when it exists. Just prove or disprove existence.

