Due Wednedsday December 5th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 7, pages 190-191):

13(d) $\quad(\leftarrow$ Problem B and/or Corollary 7.21 might be useful)

- Exercises (Section 8, pages 220-221):

1, $2^{1}, 9(a+b+c)$

Problem A. Which of the congruences below have solutions $x \in \mathbb{Z}$? Explain.
(a) $x^{2} \equiv-1(\bmod 67)$
(b) $x^{2} \equiv-1(\bmod 97)$
(c) $x^{2} \equiv 2(\bmod 79)$
(d) $x^{2} \equiv 2(\bmod 83)$
(e) $x^{2} \equiv 3(\bmod 89)$
(f) $x^{2} \equiv 3(\bmod 59)$

Problem B. Let $f(x)$ be a polynomial with integer coefficients. Suppose p is a prime and $a \in \mathbb{Z}$ satisfies the conditions

$$
f(a) \equiv 0\left(\bmod p^{n}\right) \quad f^{\prime}(a) \not \equiv 0(\bmod p)
$$

for some $n>0$. Our goal is to modify a and get a root of f modulo p^{n+1}.
(a) Observe that there is a "Taylor expansion" for every $t \in \mathbb{Z}$:

$$
f\left(a+p^{n} t\right)=f(a)+f^{\prime}(a)\left(p^{n} t\right)+\frac{f^{\prime \prime}(a)}{2!}\left(p^{n} t\right)^{2}+\cdots+\frac{f^{(N)}(a)}{N!}\left(p^{n} t\right)^{N}
$$

where N is the degree of f.

[^0](b) Explain why $\frac{f^{(k)}(a)}{k!} \in \mathbb{Z}$ for all k satisfying the inequalities $0 \leq k \leq N$.
(c) Deduce that
$$
f\left(a+p^{n} t\right) \equiv f(a)+f^{\prime}(a)\left(p^{n} t\right) \quad\left(\bmod p^{n+1}\right)
$$
(d) Conclude that there is a $t \in \mathbb{Z}$ (which is uniquely determined modulo p) with the property that $a+p^{n} t$ is a root of f modulo p^{n+1}. That is,
$$
f\left(a+p^{n} t\right) \equiv 0\left(\bmod p^{n+1}\right)
$$
(This is where you need that assumption that $f^{\prime}(a)$ is not divisible by p.)

Problem C. Compute the Legendre symbols below.

$$
\left(\frac{-1}{53}\right) \quad\left(\frac{5}{101}\right) \quad\left(\frac{5}{103}\right) \quad\left(\frac{62}{41}\right) \quad\left(\frac{89}{97}\right) .
$$

Problem D. Let $p>2$ be a prime not dividing a, and consider the first $\frac{p-1}{2}$ multiples of a :

$$
1 a, \quad 2 a, 3 a, \cdots, \frac{p-1}{2} a .
$$

For each i we let $0 \leq r_{i}<p$ be the integer for which $r_{i} \equiv i a(\bmod p)$.
(a) Decompose the index set $\left\{1,2,3, \ldots, \frac{p-1}{2}\right\}$ as a disjoint union $I \cup J$ where

$$
I=\left\{i: r_{i}>\frac{p}{2}\right\} \quad J=\left\{i: r_{i}<\frac{p}{2}\right\}
$$

Observe that $|I|+|J|=\frac{p-1}{2}$.
(b) If $i \in I$ show that $p-r_{i}$ cannot be of the form r_{j} for an index $j \in J$.
(c) Noting that $p-r_{i}<\frac{p}{2}$ for $i \in I$ infer from (b) that

$$
\left\{1,2,3, \ldots, \frac{p-1}{2}\right\}=\left\{p-r_{i}: i \in I\right\} \cup\left\{r_{j}: j \in J\right\}
$$

by first showing the inclusion \supseteq and then comparing cardinalities.
(d) By taking the product of the lists of numbers in (c) conclude that

$$
\left(\frac{a}{p}\right)=(-1)^{|I|}
$$

(This formula is known as the Gauss lemma.)

Problem E. We employ the notation introduced in Problem D. Thus

$$
i a=\left[\frac{i a}{p}\right] p+r_{i} \quad 0 \leq r_{i}<p
$$

for $i=1,2,3, \ldots, \frac{p-1}{2}$.
(a) Using part (c) of Problem D justify the following identities:
(1) $\sum_{i=1}^{\frac{p-1}{2}} r_{i}=\sum_{i \in I} r_{i}+\sum_{j \in J} r_{j}$
(2) $\sum_{i=1}^{\frac{p-1}{2}} i=p|I|-\sum_{i \in I} r_{i}+\sum_{j \in J} r_{j}$
(3) $\sum_{i=1}^{\frac{p-1}{2}} i a=p \cdot \sum_{i=1}^{\frac{p-1}{2}}\left[\frac{i a}{p}\right]+\sum_{i=1}^{\frac{p-1}{2}} r_{i}$
(b) Essentially by subtracting (2) from (3) deduce that

$$
(a-1) \cdot \frac{p^{2}-1}{8}=p \cdot(\sigma-|I|)+2 \sum_{i \in I} r_{i}
$$

where we have used the notation $\sigma:=\sum_{i=1}^{\frac{p-1}{2}}\left[\frac{i a}{p}\right]$.
(c) Conclude that for odd a we have $\left(\frac{a}{p}\right)=(-1)^{\sigma}$.
(d) Furthermore, check that $\sigma=0$ when $a=2$ and deduce the formula

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

Problem F. Fill out your CAPE teaching evaluations please!

[^0]: ${ }^{1}$ You may use the result of Problem B for $f(x)=x^{2}-41$.

