Math 104A, Fall 2018

Number Theory, HW 9

Due Wednedsday December 5th by 5PM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 7, pages 190–191):
 13(d) (← Problem B and/or Corollary 7.21 might be useful)
- Exercises (Section 8, pages 220–221):
 1, 2¹, 9(a+b+c)

Problem A. Which of the congruences below have solutions $x \in \mathbb{Z}$? Explain.

- (a) $x^2 \equiv -1 \pmod{67}$
- (b) $x^2 \equiv -1 \pmod{97}$
- (c) $x^2 \equiv 2 \pmod{79}$
- (d) $x^2 \equiv 2 \pmod{83}$
- (e) $x^2 \equiv 3 \pmod{89}$
- (f) $x^2 \equiv 3 \pmod{59}$

Problem B. Let f(x) be a polynomial with integer coefficients. Suppose p is a prime and $a \in \mathbb{Z}$ satisfies the conditions

$$f(a) \equiv 0 \pmod{p^n}$$
 $f'(a) \not\equiv 0 \pmod{p}$

for some n > 0. Our goal is to modify a and get a root of f modulo p^{n+1} .

(a) Observe that there is a "Taylor expansion" for every $t \in \mathbb{Z}$:

$$f(a+p^{n}t) = f(a) + f'(a)(p^{n}t) + \frac{f''(a)}{2!}(p^{n}t)^{2} + \dots + \frac{f^{(N)}(a)}{N!}(p^{n}t)^{N}$$

where N is the degree of f.

¹You may use the result of Problem B for $f(x) = x^2 - 41$.

- (b) Explain why $\frac{f^{(k)}(a)}{k!} \in \mathbb{Z}$ for all k satisfying the inequalities $0 \le k \le N$.
- (c) Deduce that

$$f(a+p^n t) \equiv f(a) + f'(a)(p^n t) \pmod{p^{n+1}}.$$

(d) Conclude that there is a $t \in \mathbb{Z}$ (which is uniquely determined modulo p) with the property that $a + p^n t$ is a root of f modulo p^{n+1} . That is,

$$f(a+p^n t) \equiv 0 \pmod{p^{n+1}}.$$

(This is where you need that assumption that f'(a) is not divisible by p.)

Problem C. Compute the Legendre symbols below.

$$\left(\frac{-1}{53}\right)$$
 $\left(\frac{5}{101}\right)$ $\left(\frac{5}{103}\right)$ $\left(\frac{62}{41}\right)$ $\left(\frac{89}{97}\right)$.

Problem D. Let p > 2 be a prime not dividing a, and consider the first $\frac{p-1}{2}$ multiples of a:

$$1a, 2a, 3a, \cdots, \frac{p-1}{2}a$$

For each *i* we let $0 \le r_i < p$ be the integer for which $r_i \equiv ia \pmod{p}$.

(a) Decompose the index set $\{1, 2, 3, \dots, \frac{p-1}{2}\}$ as a disjoint union $I \cup J$ where

$$I = \{i : r_i > \frac{p}{2}\} \qquad J = \{i : r_i < \frac{p}{2}\}.$$

Observe that $|I| + |J| = \frac{p-1}{2}$.

- (b) If $i \in I$ show that $p r_i$ cannot be of the form r_j for an index $j \in J$.
- (c) Noting that $p r_i < \frac{p}{2}$ for $i \in I$ infer from (b) that

$$\{1, 2, 3, \dots, \frac{p-1}{2}\} = \{p - r_i : i \in I\} \cup \{r_j : j \in J\}$$

by first showing the inclusion \supseteq and then comparing cardinalities.

(d) By taking the product of the lists of numbers in (c) conclude that

$$\left(\frac{a}{p}\right) = (-1)^{|I|}$$

(This formula is known as the <u>Gauss</u> lemma.)

Problem E. We employ the notation introduced in Problem D. Thus

$$ia = \left[\frac{ia}{p}\right]p + r_i \qquad 0 \le r_i < p$$

for $i = 1, 2, 3, \dots, \frac{p-1}{2}$.

(a) Using part (c) of Problem D justify the following identities:

(1)
$$\sum_{i=1}^{\frac{p-1}{2}} r_i = \sum_{i \in I} r_i + \sum_{j \in J} r_j$$

(2) $\sum_{i=1}^{\frac{p-1}{2}} i = p|I| - \sum_{i \in I} r_i + \sum_{j \in J} r_j$
(3) $\sum_{i=1}^{\frac{p-1}{2}} ia = p \cdot \sum_{i=1}^{\frac{p-1}{2}} \left[\frac{ia}{p}\right] + \sum_{i=1}^{\frac{p-1}{2}} r_i$

(b) Essentially by subtracting (2) from (3) deduce that

$$(a-1) \cdot \frac{p^2 - 1}{8} = p \cdot (\sigma - |I|) + 2\sum_{i \in I} r_i$$

where we have used the notation $\sigma := \sum_{i=1}^{\frac{p-1}{2}} \left[\frac{ia}{p}\right]$.

- (c) Conclude that for <u>odd</u> a we have $\left(\frac{a}{p}\right) = (-1)^{\sigma}$.
- (d) Furthermore, check that $\sigma = 0$ when a = 2 and deduce the formula

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$$

Problem F. Fill out your CAPE teaching evaluations please!