Math 104B, Winter 2019

Number Theory II, HW 1

Due Thursday January 17th by 10AM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 4, pages 122-123):
$1,4,6,7(a-d), 8,11,14(a-c)$

Problem A. Let $D>0$ be a square-free ${ }^{1}$ integer and consider the set $\mathbb{Z}[\sqrt{-D}]$ of complex numbers of the form $a+b \sqrt{-D}$ with $a, b \in \mathbb{Z}$. (Note that when we write $\sqrt{-D}$ we mean $i \sqrt{D}$.)
(a) Check that $\mathbb{Z}[\sqrt{-D}]$ is closed under addition and multiplication.
(b) Justify the formula below for the norm of $a+b \sqrt{-D}$;

$$
N(a+b \sqrt{-D})=|a+b \sqrt{-D}|^{2}=a^{2}+D b^{2}
$$

(c) When $D>1$ show that the only elements of $\mathbb{Z}[\sqrt{-D}]$ whose multiplicative inverses lie in $\mathbb{Z}[\sqrt{-D}]$ are $\{ \pm 1\}$.
(d) For $D=3$ there are two ways to factor 4 in $\mathbb{Z}[\sqrt{-3}]$ - namely

$$
4=2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})
$$

Verify that all the factors 2 and $1 \pm \sqrt{-3}$ are irreducible in $\mathbb{Z}[\sqrt{-3}]$.
(e) Conclude that $\mathbb{Z}[\sqrt{-3}]$ fails to have unique factorization into irreducibles.

[^0]
[^0]: ${ }^{1}$ I.e., a product of distinct primes; so no square >1 divides it. We allow $D=1$.

