MATH 104B, WINTER 2019

NUMBER THEORY II, HW 1

Due Thursday January 17th by 10AM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

Exercises (Section 4, pages 122–123):
1, 4, 6, 7(a-d), 8, 11, 14(a-c)

Problem A. Let D > 0 be a square-free¹ integer and consider the set $\mathbb{Z}[\sqrt{-D}]$ of complex numbers of the form $a + b\sqrt{-D}$ with $a, b \in \mathbb{Z}$. (Note that when we write $\sqrt{-D}$ we mean $i\sqrt{D}$.)

- (a) Check that $\mathbb{Z}[\sqrt{-D}]$ is closed under addition and multiplication.
- (b) Justify the formula below for the norm of $a + b\sqrt{-D}$;

$$N(a + b\sqrt{-D}) = |a + b\sqrt{-D}|^2 = a^2 + Db^2.$$

- (c) When D > 1 show that the only elements of $\mathbb{Z}[\sqrt{-D}]$ whose multiplicative inverses lie in $\mathbb{Z}[\sqrt{-D}]$ are $\{\pm 1\}$.
- (d) For D = 3 there are **two** ways to factor 4 in $\mathbb{Z}[\sqrt{-3}]$ namely

$$4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

Verify that all the factors 2 and $1 \pm \sqrt{-3}$ are irreducible in $\mathbb{Z}[\sqrt{-3}]$.

(e) Conclude that $\mathbb{Z}[\sqrt{-3}]$ fails to have **unique** factorization into irreducibles.

¹I.e., a product of distinct primes; so no square > 1 divides it. We allow D = 1.