Math 104B, Winter 2019
Number Theory II, HW 2

Due Thursday January 24th by 10AM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercises (Section 4, pages 122-123):

2, 3, 5, 9, 10, 12, 13

Problem A. Suppose $x, y, z \in \mathbb{Z}$ satisfy the Pythagorean equation $x^{2}+y^{2}=z^{2}$, and that $\operatorname{GCD}(x, y, z)=1$.
(a) Check that the Pythagorean equation is equivalent to the following identity in $\mathbb{Z}[i]$:

$$
(x+i y)(x-i y)=z^{2}
$$

(b) Explain why the two factors $x \pm i y$ are coprime. (Hint: Suppose $\pi \in \mathbb{Z}[i]$ is an irreducible element dividing both. Then $\pi \mid 2 x$ and $\pi \mid 2 i y$. Using that $\mathrm{GCD}(x, y)=1$ conclude that $\pi \sim 1+i$. Compute the ratio $\frac{x+i y}{1+i}$ and infer that x and y must be odd. Get a contradiction by reducing z^{2} modulo 4.)
(c) Using the unique factorization property of $\mathbb{Z}[i]$, deduce from (b) that $x+i y$ is associated to a square. That is, for suitable $r, s \in \mathbb{Z}$ we have

$$
x+i y \sim(r+i s)^{2}
$$

(d) Assuming y is even, show that $x+i y$ is a square. That is, one can pick $r, s \in \mathbb{Z}$ such that $x+i y=(r+i s)^{2}$.
(e) Conclude that every primitive Pythagorean triple (x, y, z) with $z>0$ and y even has the form

$$
x=r^{2}-s^{2} \quad y=2 r s \quad z=r^{2}+s^{2}
$$

for suitable $r, s \in \mathbb{Z}$.

