Math 104B, Winter 2019

Number Theory II, HW 3

Due Thursday January 31st by 10AM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

- Exercise (Section 4, page 123):

16

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 9.5, pages 427-428):

1, 2, 4, 6

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problem (Section 9.6, page 429):

1

Problem A. Our goal here is to prove Theorem 4.27 in Weissman's book.
(a) Let $p \neq 3$ be a prime number which can be expressed as $p=a^{2}-a b+b^{2}$ with $a, b \in \mathbb{Z}$. Show that $p \equiv 1(\bmod 3)$. (Hint: Complete the square, multiply by 4 , and reduce modulo 3 .)
(b) Conversely, let p be a prime number satisfying $p \equiv 1(\bmod 3)$.
(i) Use the quadratic reciprocity law to show that there exists an $x \in \mathbb{Z}$ such that

$$
x^{2} \equiv-3(\bmod p)
$$

(ii) Deduce from (i) that p is reducible in the Eisenstein integers $\mathbb{Z}[\omega]$. (Hint: Otherwise p has the prime property and therefore divides $x \pm \sqrt{-3}$.)
(iii) Conclude from (ii) that p has the form $a^{2}-a b+b^{2}$ for suitable $a, b \in \mathbb{Z}$.

Problem B. Let $x, y, z \in \mathbb{Z}$ satisfy the equation $x^{3}+y^{3}+z^{3}=0$. This problem shows ${ }^{1}$ that $x y z \equiv 0(\bmod 3)$.
(a) Verify that $3 \sim \pi^{2}$ where $\pi=1-\omega$.
(b) Check that any element of $\mathbb{Z}[\omega]$ is congruent to either 0 or ± 1 modulo π.
(c) Suppose $\theta \in \mathbb{Z}[\omega]$ is not divisible by π. Show that

$$
\theta^{3} \equiv \pm 1\left(\bmod \pi^{4}\right)
$$

(Hint: Write $\theta^{3}-1=(\theta-1)(\theta-\omega)(\theta-\bar{\omega})$ and assume $\left.\theta \equiv 1(\bmod \pi).\right)$
(d) Suppose for the sake of contradiction that $3 \nmid x y z$. Deduce from (c) that

$$
0=x^{3}+y^{3}+z^{3} \equiv \pm 1 \pm 1 \pm 1\left(\bmod \pi^{4}\right)
$$

for one of the eight sign combinations. Why is this impossible?

[^0]
[^0]: ${ }^{1}$ In fact $x y z=0$ but this requires more effort, cf. Section 9.10 in [NZM].

