MATH 104B, WINTER 2019

NUMBER THEORY II, HW 3

Due Thursday January 31st by 10AM in Shubham Sinha's box.

From Weissman's book An illustrated theory of numbers:

• Exercise (Section 4, page 123): 16

From Niven, Zuckerman, Montgomery (5th Ed.):

Problems (Section 9.5, pages 427–428):
1, 2, 4, 6

From Niven, Zuckerman, Montgomery (5th Ed.):

• Problem (Section 9.6, page 429): 1

Problem A. Our goal here is to prove Theorem 4.27 in Weissman's book.

- (a) Let $p \neq 3$ be a prime number which can be expressed as $p = a^2 ab + b^2$ with $a, b \in \mathbb{Z}$. Show that $p \equiv 1 \pmod{3}$. (Hint: Complete the square, multiply by 4, and reduce modulo 3.)
- (b) Conversely, let p be a prime number satisfying $p \equiv 1 \pmod{3}$.
 - (i) Use the quadratic reciprocity law to show that there exists an $x \in \mathbb{Z}$ such that

 $x^2 \equiv -3 \pmod{p}.$

- (ii) Deduce from (i) that p is reducible in the Eisenstein integers $\mathbb{Z}[\omega]$. (Hint: Otherwise p has the prime property and therefore divides $x \pm \sqrt{-3}$.)
- (iii) Conclude from (ii) that p has the form a^2-ab+b^2 for suitable $a, b \in \mathbb{Z}$.

Problem B. Let $x, y, z \in \mathbb{Z}$ satisfy the equation $x^3 + y^3 + z^3 = 0$. This problem shows¹ that $xyz \equiv 0 \pmod{3}$.

- (a) Verify that $3 \sim \pi^2$ where $\pi = 1 \omega$.
- (b) Check that any element of $\mathbb{Z}[\omega]$ is congruent to either 0 or $\pm 1 \mod \pi$.
- (c) Suppose $\theta \in \mathbb{Z}[\omega]$ is <u>not</u> divisible by π . Show that

$$\theta^3 \equiv \pm 1 \pmod{\pi^4}$$

(Hint: Write $\theta^3 - 1 = (\theta - 1)(\theta - \omega)(\theta - \bar{\omega})$ and assume $\theta \equiv 1 \pmod{\pi}$.)

(d) Suppose for the sake of contradiction that $3 \nmid xyz$. Deduce from (c) that

$$0 = x^3 + y^3 + z^3 \equiv \pm 1 \pm 1 \pm 1 \pmod{\pi^4}$$

for one of the eight sign combinations. Why is this impossible?

¹In fact xyz = 0 but this requires more effort, cf. Section 9.10 in [NZM].