Due Thursday February 7th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 9.7, page 431):

1, 3, 4, 5

- Problems (Section 9.8, page 432):

1, 2
Hint: Approximate $x+y \sqrt{D} \in \mathbb{Q}[\sqrt{D}]$ by $\frac{a+b \sqrt{D}}{2}$ where $a, b \in \mathbb{Z}$ satisfy

$$
|b-2 y| \leq \frac{1}{2} \quad|a-2 x| \leq 1 \quad a \equiv b(\bmod 2)
$$

Problem A. From the previous Exercise 2 in Section 9.8 we know $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ has the unique factorization property.
(a) Verify that the units of $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ all have the form $\pm\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ for some exponent $n \in \mathbb{Z}$. (Hint: Check that the golden ratio $\frac{1+\sqrt{5}}{2}$ is the smallest unit >1 by mimicking the argument for $\mathbb{Z}[\sqrt{2}]$ from last weeks homework.)
(b) Let $p \neq 5$ be an odd prime number. Using quadratic reciprocity explain why p splits in $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ precisely when $p \equiv \pm 1(\bmod 5)$.
(c) Similarly find congruence conditions on p modulo 5 describing when p is inert in $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$; meaning p remains prime.

Problem B. We consider the ring $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ of Kleinian integers.
(a) Adapting earlier arguments (from Section 9.8) show that $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ has a division algorithm and therefore the unique factorization property. What are the units?
(b) Let $p \neq 7$ be an odd prime number. Justify why p splits in $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ exactly when $p \equiv 1,2,4(\bmod 7)$. When is p inert? Factor 7 into irreducible elements.
(c) Find all primes p of the form $x^{2}+x y+2 y^{2}$ for suitable $x, y \in \mathbb{Z}$.

