MATH 104B, WINTER 2019

NUMBER THEORY II, HW 4

Due Thursday February 7th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

• Problems (Section 9.7, page 431):

1, 3, 4, 5

• Problems (Section 9.8, page 432):

1, 2

Hint: Approximate $x + y\sqrt{D} \in \mathbb{Q}[\sqrt{D}]$ by $\frac{a+b\sqrt{D}}{2}$ where $a, b \in \mathbb{Z}$ satisfy

$$|b - 2y| \le \frac{1}{2}$$
 $|a - 2x| \le 1$ $a \equiv b \pmod{2}.$

Problem A. From the previous Exercise 2 in Section 9.8 we know $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ has the unique factorization property.

- (a) Verify that the units of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ all have the form $\pm (\frac{1+\sqrt{5}}{2})^n$ for some exponent $n \in \mathbb{Z}$. (Hint: Check that the golden ratio $\frac{1+\sqrt{5}}{2}$ is the smallest unit > 1 by mimicking the argument for $\mathbb{Z}[\sqrt{2}]$ from last weeks homework.)
- (b) Let $p \neq 5$ be an odd prime number. Using quadratic reciprocity explain why p splits in $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ precisely when $p \equiv \pm 1 \pmod{5}$.
- (c) Similarly find congruence conditions on p modulo 5 describing when p is **inert** in $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$; meaning p remains prime.

Problem B. We consider the ring $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ of <u>Kleinian</u> integers.

- (a) Adapting earlier arguments (from Section 9.8) show that $\mathbb{Z}[\frac{1+\sqrt{-7}}{2}]$ has a division algorithm and therefore the unique factorization property. What are the units?
- (b) Let $p \neq 7$ be an odd prime number. Justify why p splits in $\mathbb{Z}[\frac{1+\sqrt{-7}}{2}]$ exactly when $p \equiv 1, 2, 4 \pmod{7}$. When is p inert? Factor 7 into irreducible elements.

(c) Find **all** primes p of the form $x^2 + xy + 2y^2$ for suitable $x, y \in \mathbb{Z}$.