MATH 104B, WINTER 2019

Number Theory II, HW 5

Due Thursday February 14th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 9.2, page 419): 1, 3
- Problems (Section 9.8, page 433): 3
- Problems (Section 9.9, pages 440–441):
 2, 3, 4, 5

Problem A. Let f(x) be a monic polynomial with integer coefficients:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + x^n.$$

We say f(x) is **Eisenstein** relative to a prime number p if all its coefficients $a_0, a_1, \ldots, a_{n-1}$ are multiples of p and $p^2 \nmid a_0$.

(a) If such a p exists, prove that f(x) is irreducible in Z[x]. (This means there is no factorization f(x) = g(x)h(x) with Z-polynomials g, h of degree > 0.)
(Hint: Suppose g(x) = b₀ + ··· + x^r and h(x) = c₀ + ··· + x^s give a non-trivial factorization of f(x). We may assume p|b₀ and p ∤ c₀ - why? Suppose p|b_i for all i = 0, ..., m - 1 but p ∤ b_m. Consider the coefficient

$$a_m = b_0 c_m + b_1 c_{m-1} + \dots + b_{m-1} c_1 + b_m c_0.$$

Since $p|a_m$ by assumption, Euclid's lemma implies $p|b_m$ or $p|c_{0.}$)

(b) Show that the *p*th cyclotomic polynomial $\Phi_p(x) = 1 + x + x^2 + \dots + x^{p-1}$ is irreducible in $\mathbb{Z}[x]$ by verifying that $\Phi_p(x+1)$ is Eisenstein relative to the prime *p*. Can you make this argument work for $\Phi_{p^r}(x)$?