Math 104B, Winter 2019
Number Theory II, HW 6

Due Thursday February 21st by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 6.2, page 307):

2, 4

- Problems (Section 6.3, pages 311-312):

1, 2, 3, 7, 8

Problem A. Our goal is to show $\xi=\sum_{n=1}^{\infty} 3^{-n!}$ is transcendental.
(a) Why is the infinite series defining ξ convergent?
(b) Let $s_{N}=\sum_{n=1}^{N} 3^{-n!}$ be the N th partial sum. Check that $s_{N}=\frac{a}{3^{N!}}$ where $3 \nmid a$.
(c) Observe that for all N sufficiently large we have an inequality
$\left|\xi-\frac{a}{3^{N!}}\right|=\sum_{n=N+1}^{\infty} 3^{-n!}<\frac{1}{3^{(N+1)!}} \cdot\left(1+\frac{1}{3^{(N+1)}}+\frac{1}{3^{(N+1)(N+2)}}+\cdots\right)$.
Moreover, show that the parenthetical sum is $<\frac{3}{2}$ by comparing it to a geometric sum.
(d) Conclude from (c) that for all N large enough we have

$$
\left|\xi-\frac{a}{3^{N!}}\right|<\frac{1 / 2}{\left(3^{N!}\right)^{N}}
$$

(e) If ξ is algebraic of degree $m>1$, Liouville's approximation theorem gives the existence of a constant $c(\xi)>0$ for which

$$
\left|\xi-\frac{r}{s}\right| \geq \frac{c(\xi)}{s^{m}}
$$

for all $\frac{r}{s} \in \mathbb{Q}$ with $s>0$. Why does this contradict the inequality in (d)?

