Math 104B, Winter 2019
Number Theory II, HW 7

Due Thursday February 28th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 7.1, page 327):

1, 3, 4, 5

- Problems (Section 7.3, page 333):

1, 2, 3

Problem A. Fix an $a \in \mathbb{N}$, and define a sequence of positive integers $\left(x_{n}\right)_{n \geq 0}$ recursively by the equations

$$
x_{n}=a x_{n-1}+x_{n-2} \quad x_{1}=a \quad x_{0}=1
$$

(a) Give the first five terms of the sequence $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$.
(b) Show that $\frac{x_{n}}{x_{n-1}}$ has the following continued fraction $\forall n \geq 1$:

$$
\frac{x_{n}}{x_{n-1}}=\langle a, \ldots, a\rangle=a+\frac{1}{a+\cdots+\frac{1}{a}}
$$

(There are n partial quotients a on the right.)
(c) Conclude that $\frac{x_{n}}{x_{n-1}}$ converges as $n \rightarrow \infty$ and find the limit.
(d) Do you recognize the sequence $\left(x_{n}\right)_{n \geq 0}$ for $a=1$? (Hint: Rabbits.)

