Math 104B, Winter 2019
Number Theory II, HW 8

Due Thursday March 7th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 7.3, page 333):

4, 5, 6

- Problems (Section 7.4, page 336):

1

- Problems (Section 7.6, page 344):

1, 2

Problem A. Let $\alpha>1$ be an irrational number, whose convergents we denote by $c_{n}(\alpha)$. Similarly for $\frac{1}{\alpha}$.
(a) Show that $\forall n>0$ we have the relation

$$
c_{n}\left(\frac{1}{\alpha}\right)=c_{n-1}(\alpha)^{-1} .
$$

(b) Write $c_{n}(\alpha)$ in its lowest terms $\frac{r_{n}(\alpha)}{s_{n}(\alpha)}$ (analogously for $\frac{1}{\alpha}$) and deduce the following identity from (a).

$$
r_{n}\left(\frac{1}{\alpha}\right) r_{n-1}(\alpha)=s_{n}\left(\frac{1}{\alpha}\right) s_{n-1}(\alpha) .
$$

Problem B. Verify the three identities below for all integers $a>0$.
(a) $\sqrt{a^{2}+1}=\langle a, \overline{2 a}\rangle$
(b) $\sqrt{a^{2}+2}=\langle a, \overline{a, 2 a}\rangle$
(c) $\sqrt{a^{2}-2}=\langle a-1, \overline{1, a-2,1,2 a-2}\rangle-$ assuming $a>2$.

