Due Thursday March 14th by 10AM in Shubham Sinha's box.

From Niven, Zuckerman, Montgomery (5th Ed.):

- Problems (Section 7.7, page 351):

1

- Problems (Section 7.8, page 356):

2, 5, 7, 8, 9, 11

Problem A. Suppose $\alpha \in \mathbb{R}$ is given by a purely periodic continued fraction

$$
\alpha=\left\langle\overline{a_{0}, a_{1}, \ldots, a_{N}}\right\rangle .
$$

Let $\beta=\left\langle\overline{a_{N}, a_{N-1}, \ldots, a_{0}}\right\rangle$ be its reflection (where the partial quotients appear in the opposite order).
(a) Verify that α and $-\frac{1}{\beta}$ satisfy the same quadratic equation. (Hint: Here exercise 4 on page 333 in section 7.3 is helpful, cf. HW8.)
(b) Using that both α and β are necessarily reduced, rule out that $-\frac{1}{\beta}=\alpha$ and conclude that $-\frac{1}{\beta}=\bar{\alpha}$ ($=$ the conjugate of α in the pertaining quadratic field).
(c) Let $D>0$ be a non-square integer with continued fraction

$$
\sqrt{D}=\left\langle b_{0}, \overline{b_{1}, \ldots, b_{M}, 2 b_{0}}\right\rangle
$$

By applying (b) to $\alpha=b_{0}+\sqrt{D}$ deduce that \sqrt{D} has a palindromic continued fraction - meaning that

$$
b_{1}=b_{M}, \quad b_{2}=b_{M-1}, \quad b_{3}=b_{M-2}, \quad \ldots
$$

Problem B. Thank you for a great quarter! Please do us a big favor and fill out your CAPE teaching evaluations (due Monday March 18th at 8AM).

