MATH 109, Spring 2018

MATHEMATICAL REASONING , HW 4

Due May 1st by 10AM in Roman Kitsela's box

From Hammack's Book of Proof:

- Exercises <u>2.4</u> (-): 2, 4
- Exercises <u>2.5</u> (-): 2, 4, 6
- Exercises <u>2.6</u> (A): 4, 8
- Exercises <u>2.6</u> (B): 12, 14
- Exercises <u>2.7</u> (-): 2, 4, 6, 8, 10

Problem I. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence x_1, x_2, x_3, \ldots of real numbers. The sequence is said to be *Cauchy* if the following condition holds.

 $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall m, n \ge N : \; |x_m - x_n| < \epsilon.$

- (a) Write out this definition in plain English.
- (b) Using quantifiers state what it means for $(x_n)_{n \in \mathbb{N}}$ to <u>not</u> be Cauchy.
- (c) Show that the following two statements are true:
 - (1) $(x_n)_{n \in \mathbb{N}}$ is convergent $\implies (x_n)_{n \in \mathbb{N}}$ is Cauchy
 - (2) $(x_n)_{n \in \mathbb{N}}$ is Cauchy $\Longrightarrow (x_n)_{n \in \mathbb{N}}$ is bounded.
- (d) Give an example of a bounded sequence which is <u>not</u> Cauchy.
- (e) Can you think of a Cauchy sequence which is <u>not</u> convergent?