Math 109, Spring 2018
Mathematical Reasoning, HW 5

Due May 8th by 10AM in Roman Kitsela's box

From Hammack's Book of Proof:

- Exercises $2.9(-): 4$
- Exercises $2.10(-): 4$
- Exercises $3.2(-): 4,6,8$
- Exercises 3.3 (-): 2, 4, 10, 14
- Exercises 3.4 (-): 2, 4, 12, 14

Problem I. Consider an $m \times n$ grid in the plane. How many shortest paths are there from the lower left corner to the upper right corner? (Here paths move along the grid lines. This is known as Manhattan geometry.)

Problem II. Recall that the well-ordering principle for \mathbb{N} says that
(WOP) Every non-empty subset of \mathbb{N} has a smallest element.
(a) Write out with symbolic logic ($\epsilon, \wedge, \forall$ etc.) what it means for an element $s \in A$ to be a smallest element of a subset $A \subseteq \mathbb{N}$.
(b) Prove that this smallest element s is necessarily uniquely determined (for an arbitrary but fixed non-empty subset $A \subseteq \mathbb{N}$).
(c) Using only the (WOP) show that the following statement is true ${ }^{1}$:

Every non-empty bounded subset of \mathbb{N} has a largest element.

Hint: Apply the well-ordering principle to the set of bounds b for $X \subseteq \mathbb{N}$.

[^0]
[^0]: ${ }^{1}$ A subset $X \subseteq \mathbb{N}$ is bounded if there is a $b \in \mathbb{N}$ such that $x \leq b$ holds for all $x \in X$.

