MATH 109, Spring 2018

MATHEMATICAL REASONING , HW 5

Due May 8th by 10AM in Roman Kitsela's box

From Hammack's Book of Proof:

- Exercises <u>2.9</u> (-): 4
- Exercises <u>2.10</u> (-): 4
- Exercises <u>3.2</u> (-): 4, 6, 8
- Exercises <u>3.3</u> (-): 2, 4, 10, 14
- Exercises <u>3.4</u> (-): 2, 4, 12, 14

Problem I. Consider an $m \times n$ grid in the plane. How many shortest paths are there from the lower left corner to the upper right corner? (Here *paths* move along the grid lines. This is known as Manhattan geometry.)

Problem II. Recall that the *well-ordering principle* for \mathbb{N} says that

(WOP) Every non-empty subset of \mathbb{N} has a smallest element.

- (a) Write out with symbolic logic $(\in, \land, \forall \text{ etc.})$ what it means for an element $s \in A$ to be a <u>smallest element</u> of a subset $A \subseteq \mathbb{N}$.
- (b) Prove that this smallest element s is necessarily uniquely determined (for an arbitrary but fixed non-empty subset $A \subseteq \mathbb{N}$).
- (c) Using only the (WOP) show that the following statement is true¹:

Every non-empty <u>bounded</u> subset of \mathbb{N} has a largest element.

Hint: Apply the well-ordering principle to the set of bounds b for $X \subseteq \mathbb{N}$.

¹A subset $X \subseteq \mathbb{N}$ is *bounded* if there is a $b \in \mathbb{N}$ such that $x \leq b$ holds for all $x \in X$.