Math 109, Spring 2018
Mathematical Reasoning, HW 7

Due May 22nd by 10AM in Roman Kitsela's box

From Hammack's Book of Proof:

- Exercises Sect. 11.4 (p. 194): 2, 4, 6, 8
- Exercises Ch. 10 (p. 169): 2, 4, 6, 8, 10, 12, 16, 20, 24

Problem I.

(a) Describe the partition of \mathbb{Z} resulting from the relation $\equiv(\bmod 2)$.
(b) Consider the partition of \mathbb{Z} below:
$\mathbb{Z}=\{\cdots-6,-3,0,3,6 \cdots\} \cup\{\cdots-5,-2,1,4,7 \cdots\} \cup\{\cdots-4,-1,2,5,8 \cdots\}$.

Which familiar relation on \mathbb{Z} does it arise from?
(c) Which of the three subsets in (b) contains the number 2018?

Problem II.

(a) Find all positive integers $x<100$ such that $x \equiv 2018(\bmod 13)$.
(b) Find all positive integers $x<100$ such that $9 x \equiv 1(\bmod 13)$.
(c) Does the residue class [9] have an inverse in \mathbb{Z}_{13} ? If so exhibit the inverse residue class as $[x]$ for some non-negative integer $x<13$.
(d) Does the residue class [9] have an inverse in \mathbb{Z}_{18} ? If so exhibit the inverse residue class as $[x]$ for some non-negative integer $x<18$.

