Math 109, Mathematical Reasoning, Final Exam

Monday, March 16th, 2020, 11:30am-2:30pm, TBA

- Your Name:
- ID Number:
- Section:

> C01 (4:00 PM) C02 (5:00 PM)

Problem \#	Points (out of 10)
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total (out of 90):	

Problem 1. Which of the four sets below are countable? Justify your answers.
(a) \mathbb{R}.
(b) $\mathbb{N} \times \mathbb{Q}$.
(c) The power set $\mathcal{P}(\mathbb{N})(=$ the set of all subsets of $\mathbb{N})$.
(d) The set of all finite subsets of \mathbb{N}.

Problem 2. A subset $A \subseteq \mathbb{R}$ is open if for every $a \in A$ there is an $\epsilon>0$ such that the open interval $(a-\epsilon, a+\epsilon)$ is contained in A.
(a) Explain why $(0, \infty)$ is open, but $[0, \infty)$ is not.
(b) Suppose $A, B \subseteq \mathbb{R}$ are two open subsets. Show that $A \cap B$ is open.
(c) Suppose we have whole sequence of open subsets of \mathbb{R}, say

$$
A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots
$$

Can one conclude that their intersection $\bigcap_{n=1}^{\infty} A_{n}$ is also open? Prove it in general or give a counterexample.

Problem 3. For each of the functions below indicate whether it is injective, and whether it is surjective. If a function is bijective give its inverse function.
(a) $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x)=x^{2}$.
(b) $g: \mathbb{R} \longrightarrow[0, \infty)$ given by $g(x)=2 x^{2}$.
(c) $h:[0, \infty) \longrightarrow \mathbb{R}$ given by $h(x)=3 x^{2}$.
$(\mathrm{d}) k:[0, \infty) \longrightarrow[0, \infty)$ given by $k(x)=4 x^{2}$.

Problem 4. Fix a positive integer N throughout this problem.
(a) Suppose we are given more than N numbers in $[0,1]$. Explain why at least two of them must be within a distance $\frac{1}{N}$ of each other.
(b) Suppose we are given more than N^{2} points in the square $[0,1] \times[0,1]$. Explain why at least two of the points must be within a distance $\frac{\sqrt{2}}{N}$.

Problem 5. Define a function $f:\{1,2,3,4,5\} \longrightarrow\{6,7,8,9\}$ as follows:

$$
f(1)=7 \quad f(2)=6 \quad f(3)=9 \quad f(4)=7 \quad f(5)=9 .
$$

(a) List all elements of its range $f(\{1,2,3,4,5\})$.
(b) Give all elements of the two inverse images $f^{-1}(\{6,7\})$ and $f^{-1}(\{8,9\})$.
(c) Let $g:\{0,1\} \rightarrow\{1,2,3,4,5\}$ be the function with values $g(0)=3$ and $g(1)=4$. Find the two values $(f \circ g)(0)$ and $(f \circ g)(1)$.
(d) Is $f \circ g$ injective or surjective? Does $f \circ g$ have an inverse function?

Problem 6. For an integer a we let $[a]$ denote its residue class modulo 6.
(a) List all elements of [3] belonging to the open interval $(-10,10)$.
(b) Find integers a, b in the range $0 \leq a, b<6$ such that

$$
[3]+[4]=[a] \quad[3] \bullet[4]=[b] .
$$

(c) Introduce the subset $S \subseteq \mathbb{Z}$ consisting of all products $x y$ for varying $x \in[3]$ and $y \in[4]$. Is S a residue class modulo 6 ?

Problem 7. Let $\mathbb{R}^{\times}=\mathbb{R}-\{0\}$ denote the set of nonzero real numbers.
Define a relation \sim on \mathbb{R}^{\times}by declaring that, for nonzero $a, b \in \mathbb{R}$,

$$
a \sim b \Longleftrightarrow \exists r \in \mathbb{Q}: r a=b .
$$

(a) Verify that \sim is an equivalence relation on \mathbb{R}^{\times}.
(b) Which of the following statements are true? Explain.
(i) $\frac{1}{\sqrt{5}} \sim \sqrt{5}$
(ii) $\frac{\pi}{3} \sim \pi$
(iii) $\frac{3}{5} \sim \sqrt{2}$
(c) Show that the equivalence class [2020] is the same as $\mathbb{Q}^{\times}=\mathbb{Q}-\{0\}$.

Problem 8. Define three sequences of numbers as follows.

$$
T_{n}=\sum_{r=1}^{n} r \quad S_{n}=\sum_{r=1}^{n} r^{2} \quad R_{n}=\sum_{r=1}^{n} r^{3}
$$

(a) Use induction to verify the formula $T_{n}=\frac{1}{2} n(n+1)$ for all $n \in \mathbb{N}$.
(b) Use induction to verify the formula $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$ for all $n \in \mathbb{N}$.
(c) Calculate R_{n} for $n=1,2,3,4,5$. Guess an explicit formula for R_{n} in terms of n, and prove it by induction. (Hint: List T_{n} for $n=1,2,3,4,5$.)

Problem 9. A sequence of real numbers $x_{1}, x_{2}, x_{3}, \ldots$ is said to be Cauchy if $\forall \epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\epsilon$ for any two indices $m, n \geq N$.
(a) Prove that any convergent sequence is Cauchy.
(b) Prove that any Cauchy sequence is bounded ${ }^{1}$.
(c) Give an example of a bounded sequence which is not Cauchy.

[^0]Extra page I.

Extra page II.

Extra page III.

[^0]: ${ }^{1}$ This means all its terms x_{n} lie in some interval of finite length.

