Math 109, Mathematical Reasoning, Final Exam

Monday, March 16th, 2020, 11:30am-2:30pm, TBA

- Your Name:
- ID Number:
- Section:

C01 (4:00 PM) C02 (5:00 PM)

Problem #	Points (out of 10)
1	
2	
3	
4	
5	
6	
7	
8	
9	

Total (out of 90):

 $\label{eq:problem 1. Which of the four sets below are \underline{countable}? Justify your answers.$

- (a) \mathbb{R} .
- (b) $\mathbb{N} \times \mathbb{Q}$.
- (c) The power set $\mathcal{P}(\mathbb{N})$ (=the set of all subsets of \mathbb{N}).
- (d) The set of all **finite** subsets of \mathbb{N} .

Problem 2. A subset $A \subseteq \mathbb{R}$ is **open** if for every $a \in A$ there is an $\epsilon > 0$ such that the open interval $(a - \epsilon, a + \epsilon)$ is contained in A.

- (a) Explain why $(0,\infty)$ is open, but $[0,\infty)$ is not.
- (b) Suppose $A,B\subseteq \mathbb{R}$ are two open subsets. Show that $A\cap B$ is open.
- (c) Suppose we have whole sequence of open subsets of \mathbb{R} , say

$$A_1, A_2, A_3, \ldots, A_n, \ldots$$

Can one conclude that their intersection $\bigcap_{n=1}^{\infty} A_n$ is also open? Prove it in general or give a counterexample.

Problem 3. For each of the functions below indicate whether it is injective, and whether it is surjective. If a function is bijective give its inverse function.

- (a) $f : \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x) = x^2$.
- (b) $g: \mathbb{R} \longrightarrow [0, \infty)$ given by $g(x) = 2x^2$.
- (c) $h: [0, \infty) \longrightarrow \mathbb{R}$ given by $h(x) = 3x^2$.
- (d) $k: [0, \infty) \longrightarrow [0, \infty)$ given by $k(x) = 4x^2$.

Problem 4. Fix a positive integer N throughout this problem.

- (a) Suppose we are given <u>more</u> than N numbers in [0, 1]. Explain why at least two of them must be within a distance $\frac{1}{N}$ of each other.
- (b) Suppose we are given <u>more</u> than N^2 points in the square $[0, 1] \times [0, 1]$. Explain why at least two of the points must be within a distance $\frac{\sqrt{2}}{N}$.

Problem 5. Define a function $f : \{1, 2, 3, 4, 5\} \longrightarrow \{6, 7, 8, 9\}$ as follows:

f(1) = 7 f(2) = 6 f(3) = 9 f(4) = 7 f(5) = 9.

- (a) List all elements of its range $f(\{1, 2, 3, 4, 5\})$.
- (b) Give all elements of the two inverse images $f^{-1}(\{6,7\})$ and $f^{-1}(\{8,9\})$.
- (c) Let $g : \{0,1\} \rightarrow \{1,2,3,4,5\}$ be the function with values g(0) = 3 and g(1) = 4. Find the two values $(f \circ g)(0)$ and $(f \circ g)(1)$.
- (d) Is $f \circ g$ injective or surjective? Does $f \circ g$ have an inverse function?

Problem 6. For an integer a we let [a] denote its residue class modulo 6.

- (a) List all elements of [3] belonging to the open interval (-10, 10).
- (b) Find integers a, b in the range $0 \le a, b < 6$ such that

$$[3] + [4] = [a] \qquad [3] \bullet [4] = [b].$$

(c) Introduce the subset $S \subseteq \mathbb{Z}$ consisting of all products xy for varying $x \in [3]$ and $y \in [4]$. Is S a residue class modulo 6?

Problem 7. Let $\mathbb{R}^{\times} = \mathbb{R} - \{0\}$ denote the set of nonzero real numbers. Define a relation ~ on \mathbb{R}^{\times} by declaring that, for nonzero $a, b \in \mathbb{R}$,

$$a \sim b \iff \exists r \in \mathbb{Q} : ra = b$$

- (a) Verify that \sim is an equivalence relation on \mathbb{R}^{\times} .
- (b) Which of the following statements are true? Explain.
 - (i) $\frac{1}{\sqrt{5}} \sim \sqrt{5}$ (ii) $\frac{\pi}{3} \sim \pi$ (iii) $\frac{3}{5} \sim \sqrt{2}$
- (c) Show that the equivalence class [2020] is the same as $\mathbb{Q}^{\times} = \mathbb{Q} \{0\}$.

Problem 8. Define three sequences of numbers as follows.

$$T_n = \sum_{r=1}^n r$$
 $S_n = \sum_{r=1}^n r^2$ $R_n = \sum_{r=1}^n r^3.$

- (a) Use induction to verify the formula $T_n = \frac{1}{2}n(n+1)$ for all $n \in \mathbb{N}$.
- (b) Use induction to verify the formula $S_n = \frac{1}{6}n(n+1)(2n+1)$ for all $n \in \mathbb{N}$.
- (c) Calculate R_n for n = 1, 2, 3, 4, 5. Guess an explicit formula for R_n in terms of n, and prove it by induction. (Hint: List T_n for n = 1, 2, 3, 4, 5.)

Problem 9. A sequence of real numbers x_1, x_2, x_3, \ldots is said to be **Cauchy** if $\forall \epsilon > 0$ there is an $N \in \mathbb{N}$ such that $|x_m - x_n| < \epsilon$ for any two indices $m, n \ge N$.

- (a) Prove that any convergent sequence is Cauchy.
- (b) Prove that any Cauchy sequence is bounded¹.
- (c) Give an example of a bounded sequence which is <u>not</u> Cauchy.

¹This means all its terms x_n lie in some interval of finite length.

Extra page I.

Extra page II.

Extra page III.