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Problem 1. Which of the four sets below are countable? Justify your answers.

(a) R.

(b) N×Q.

(c) The power set P(N) (=the set of all subsets of N).

(d) The set of all finite subsets of N.
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Problem 2. A subset A ⊆ R is open if for every a ∈ A there is an ε > 0 such

that the open interval (a− ε, a+ ε) is contained in A.

(a) Explain why (0,∞) is open, but [0,∞) is not.

(b) Suppose A,B ⊆ R are two open subsets. Show that A ∩B is open.

(c) Suppose we have whole sequence of open subsets of R, say

A1, A2, A3, . . . , An, . . . .

Can one conclude that their intersection
⋂∞
n=1An is also open? Prove it

in general or give a counterexample.
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Problem 3. For each of the functions below indicate whether it is injective,

and whether it is surjective. If a function is bijective give its inverse function.

(a) f : R −→ R given by f(x) = x2.

(b) g : R −→ [0,∞) given by g(x) = 2x2.

(c) h : [0,∞) −→ R given by h(x) = 3x2.

(d) k : [0,∞) −→ [0,∞) given by k(x) = 4x2.
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Problem 4. Fix a positive integer N throughout this problem.

(a) Suppose we are given more than N numbers in [0, 1]. Explain why at

least two of them must be within a distance 1
N of each other.

(b) Suppose we are given more than N2 points in the square [0, 1]× [0, 1].

Explain why at least two of the points must be within a distance
√
2
N .
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Problem 5. Define a function f : {1, 2, 3, 4, 5} −→ {6, 7, 8, 9} as follows:

f(1) = 7 f(2) = 6 f(3) = 9 f(4) = 7 f(5) = 9.

(a) List all elements of its range f({1, 2, 3, 4, 5}).

(b) Give all elements of the two inverse images f−1({6, 7}) and f−1({8, 9}).

(c) Let g : {0, 1} → {1, 2, 3, 4, 5} be the function with values g(0) = 3 and

g(1) = 4. Find the two values (f ◦ g)(0) and (f ◦ g)(1).

(d) Is f ◦ g injective or surjective? Does f ◦ g have an inverse function?
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Problem 6. For an integer a we let [a] denote its residue class modulo 6.

(a) List all elements of [3] belonging to the open interval (−10, 10).

(b) Find integers a, b in the range 0 ≤ a, b < 6 such that

[3] + [4] = [a] [3] • [4] = [b].

(c) Introduce the subset S ⊆ Z consisting of all products xy for varying

x ∈ [3] and y ∈ [4]. Is S a residue class modulo 6?
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Problem 7. Let R× = R− {0} denote the set of nonzero real numbers.

Define a relation ∼ on R× by declaring that, for nonzero a, b ∈ R,

a ∼ b⇐⇒ ∃r ∈ Q : ra = b.

(a) Verify that ∼ is an equivalence relation on R×.

(b) Which of the following statements are true? Explain.

(i) 1√
5
∼
√

5

(ii) π
3 ∼ π

(iii) 3
5 ∼
√

2

(c) Show that the equivalence class [2020] is the same as Q× = Q− {0}.
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Problem 8. Define three sequences of numbers as follows.

Tn ==

n∑
r=1

r Sn ==

n∑
r=1

r2 Rn ==

n∑
r=1

r3.

(a) Use induction to verify the formula Tn = 1
2n(n+ 1) for all n ∈ N.

(b) Use induction to verify the formula Sn = 1
6n(n+ 1)(2n+ 1) for all n ∈ N.

(c) Calculate Rn for n = 1, 2, 3, 4, 5. Guess an explicit formula for Rn in

terms of n, and prove it by induction. (Hint: List Tn for n = 1, 2, 3, 4, 5.)
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Problem 9. A sequence of real numbers x1, x2, x3, . . . is said to be Cauchy if

∀ε > 0 there is an N ∈ N such that |xm−xn| < ε for any two indices m,n ≥ N .

(a) Prove that any convergent sequence is Cauchy.

(b) Prove that any Cauchy sequence is bounded1.

(c) Give an example of a bounded sequence which is not Cauchy.

1This means all its terms xn lie in some interval of finite length.
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