Math 109, Winter 2020
Mathematical Reasoning, HW 0

Not to be handed in. For your personal use only. Will not be graded.

From the book by Chartrand, Polimeni, and Zhang:

- Exercises (Section 1.1, pages 17-18):
1.4, 1.6

Problem A. Read Chapter 0 from the book on Communicating Mathematics.

Problem B. Try some of the odd-numbered exercises in sections 1.1-1.3. (You can compare your solutions to those in the back of the book.)

Problem C.

(a) Convert the expression $(x-1)(x+2)$ into a polynomial. That is, find the coefficients a, b, c such that

$$
(x-1)(x+2)=a x^{2}+b x+c .
$$

(b) Find the roots of the polynomial $x^{2}-2 x-3$ and factor it as

$$
x^{2}-2 x-3=(x-\alpha)(x-\beta)
$$

for suitable α and β.

Problem D. The even numbers are those of the form $2 n$ for an integer n. The odd numbers are those of the form $2 n+1$.
(a) Show that the sum of two odd numbers is even.
(b) Show that the product of two odd numbers is odd.
(c) Deduce from part (b) that if a product of two integers is even, then at least one of the two factors must be even.

Problem E. Consider the following two subsets of integers:

$$
A=\{2,3,5,7,11,13\} \quad B=\{-3,-2,-1,0,1,2,3\}
$$

(a) Give the cardinality of each set, that is $|A|$ and $|B|$.
(b) List all elements of their union $A \cup B$, and of their intersection $A \cap B$.
(c) Which of the statements below are true? Justify your answers.
(i) $7 \in A$
(ii) $0 \subseteq B$
(iii) $\{13\} \subseteq A$
(iv) $3 \in A \cap B$
(v) $A \nsubseteq B$

Problem F. Find the sum of all positive integers less than or equal to 1000:

$$
T_{1000}=1+2+3+4+5+\cdots+1000=?
$$

Can you guess a formula for the sum $T_{n}=1+2+3+\cdots+n$, where n is any positive integer? Why do you think such a number is called triangular?

Problem G. Recall that if $a_{1}, a_{2}, \ldots, a_{n}$ is a list of numbers, we let $\sum_{i=1}^{n} a_{i}$ denote their sum $a_{1}+a_{2}+\cdots+a_{n}$. Evaluate the sums below.
(a) $\sum_{i=1}^{3} 2 i-1$
(b) $\sum_{i=1}^{4} i^{2}$
(c) $\sum_{i=1}^{5} i+i^{3}$

