Partial Solutions for HW0

Problem C.

(a) Applying the distribution law, we have

$$
(x-1)(x+2)=x^{2}+(-1+2) x+(-1) \cdot 2=x^{2}+x-2 .
$$

(b) Let $f(x):=x^{2}-2 x-3$. Note that

$$
f(-1)=(-1)^{2}-2(-1)-3=1+2-3=0 .
$$

Therefore $f(x)$ will have $(x+1)$ as a factor, i.e., we can take $\alpha=-1$. One the other hand, we can check by computation that

$$
2=\alpha+\beta,
$$

hence $\beta=3$.

Problem D.

(a) Let x, y be two odd numbers. By definition of being an odd number, we have

$$
x=2 n+1, \quad y=2 m+1
$$

for some $n, m \in \mathbb{Z}$. Now we add these two odd numbers

$$
\begin{aligned}
x+y & =(2 n+1)+(2 m+1) \\
& =2 n+2 m+2 \\
& =2(n+m+1) .
\end{aligned}
$$

Since $n+m+1$ is some integer, $x+y$ is an even number by definition of being an even number.
(b) We take x, y similarly as in (a). Now we take a product of these

$$
\begin{aligned}
x \cdot y & =(2 n+1)(2 m+1) \\
& =4 n m+2 n+2 m+1 \\
& =2(2 n m+n+m)+1 .
\end{aligned}
$$

Since $2 n m+n+m$ is some integer, $x \cdot y$ is an even number by definition.
(c) We prove by contradiction. Let x, y be two integers. Suppose that $x \cdot y$ is even number but both of x and y are odd numbers. By part (b), the product of odd numbers is odd which contradicts the assumption. This completes the proof.

Problem F. Define

$$
T_{n}:=1+2+3+\cdots+n=\sum_{k=1}^{n} k .
$$

We use a standard trick to find the summatory function of arithmetic progression.

$$
\begin{aligned}
& T_{n}=1+\quad 2+3+\cdots+n \\
& T_{n}=n+(n-1)+(n-2)+\cdots+1
\end{aligned}
$$

By adding up two rows, we obtain

$$
2 T_{n}=(n+1)+(n+1)+(n+1)+\cdots+(n+1)=n(n+1) .
$$

Therefore, we conclude

$$
T_{n}=\frac{n(n+1)}{2} .
$$

In particular,

$$
T_{1000}=\frac{1000 \times 10001}{2}=5000500 .
$$

Problem G.

(c) Straightforward calculation gives

$$
\begin{aligned}
\sum_{i=1}^{5} i+i^{3} & =\left(1+1^{3}\right)+\left(2+2^{3}\right)+\cdots+\left(5+5^{3}\right) \\
& =(1+1)+(2+8)+(3+27)+(4+64)+(5+125) \\
& =240
\end{aligned}
$$

