Partial Solutions for HW0

Problem C.
(a) Applying the distribution law, we have

\[(x - 1)(x + 2) = x^2 + (-1 + 2)x + (-1) \cdot 2 = x^2 + x - 2.\]

(b) Let \(f(x) := x^2 - 2x - 3 \). Note that

\[f(-1) = (-1)^2 - 2(-1) - 3 = 1 + 2 - 3 = 0.\]

Therefore \(f(x) \) will have \((x + 1) \) as a factor, i.e., we can take \(\alpha = -1 \). One the other hand, we can check by computation that

\[2 = \alpha + \beta,\]

hence \(\beta = 3 \).

Problem D.
(a) Let \(x, y \) be two odd numbers. By definition of being an odd number, we have

\[x = 2n + 1, \quad y = 2m + 1\]

for some \(n, m \in \mathbb{Z} \). Now we add these two odd numbers

\[x + y = (2n + 1) + (2m + 1) = 2n + 2m + 2 = 2(n + m + 1).\]

Since \(n + m + 1 \) is some integer, \(x + y \) is an even number by definition of being an even number.

(b) We take \(x, y \) similarly as in (a). Now we take a product of these

\[x \cdot y = (2n + 1)(2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1.\]

Since \(2nm + n + m \) is some integer, \(x \cdot y \) is an even number by definition.

(c) We prove by contradiction. Let \(x, y \) be two integers. Suppose that \(x \cdot y \) is even number but both of \(x \) and \(y \) are odd numbers. By part (b), the product of odd numbers is odd which contradicts the assumption. This completes the proof.

Problem F. Define

\[T_n := 1 + 2 + 3 + \cdots + n = \sum_{k=1}^{n} k.\]
We use a standard trick to find the summatory function of arithmetic progression.

\[
T_n = 1 + 2 + 3 + \cdots + n
\]

\[
T_n = n + (n - 1) + (n - 2) + \cdots + 1
\]

By adding up two rows, we obtain

\[
2T_n = (n + 1) + (n + 1) + (n + 1) + \cdots + (n + 1) = n(n + 1).
\]

Therefore, we conclude

\[
T_n = \frac{n(n + 1)}{2}.
\]

In particular,

\[
T_{1000} = \frac{1000 \times 10001}{2} = 5000500.
\]

Problem G.

(c) Straightforward calculation gives

\[
\sum_{i=1}^{5} i + i^3 = (1 + 1^3) + (2 + 2^3) + \cdots + (5 + 5^3)
\]

\[
= (1 + 1) + (2 + 8) + (3 + 27) + (4 + 64) + (5 + 125)
\]

\[
= 240.
\]