Partial Solutions for HW1

Exercise 1.8

- (a) $A = \{-3, -2, 2, 3\}$
- (b) 2.1, π , or $\frac{7}{3}$.
- (c) For $x \in \mathbb{R}$,

 $x^{2} - (2 + \sqrt{2})x + 2\sqrt{2} = (x - 2)(x - \sqrt{2}) = 0$ if and only if x = 2 or $x = \sqrt{2}$,

we have $C = \{2, \sqrt{2}\}.$

(d) For $x \in \mathbb{Q}$, $x^2 - (2 + \sqrt{2})x + 2\sqrt{2} = 0$ if and only if x = 2,

because $\sqrt{2} \notin \mathbb{Q}$. Therefore $D = \{2\}$.

(e) |A| = 4, |C| = 2, and |D| = 1.

Exercise 1.14 Fine $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for following A's.

(a) Let $A = \{1, 2\}$. Then the power set of A is

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

and $|\mathcal{P}(A)| = 4$ as expected from the formula

$$|\mathcal{P}(A)| = 2^{|A|} = 2^2 = 4.$$

(b) Let $A = \{\emptyset, 1, \{a\}\}$. Then the power set of A is

$$\mathcal{P}(A) = \left\{ \emptyset, \{\emptyset\}, \{1\}, \{\{a\}\}, \{1, \{a\}\}, \{\{a\}, \emptyset\}, \{\emptyset, 1\}, \{\emptyset, 1, \{a\}\} \right\} \right\}$$

and $|\mathcal{P}(A)| = 8$ as expected from the formula

$$|\mathcal{P}(A)| = 2^{|A|} = 2^3 = 8.$$

Exercise 1.20

- (a) False. Let $A = \{1, \{1\}\}$. This is a counterexample of the statement because even if $\{1\} \in \mathcal{P}(A)$, we have $1 \in A$ and $\{1\} \in A$.
- (b) True. Suppose $A \subset \mathcal{P}(B) \subset C$ and |A| = 2. Then we have a strict inequalities (because \subset only means proper subset) of the cardinalities

$$2 = |A| < 2^{|B|} < |C|.$$

This implies that $|B| \ge 4$ and so |C| > 4. This proves that |C| cannot be 4. On the other hand, |C| can be 5 if we choose

$$A = \{\emptyset, \{1\}\}, \quad B = \{1, 2\}, \quad C = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, 3\}.$$

- (c) False. Let $A = \emptyset$ and $B = \{1\}$. This is a counterexample of the statement because even if |B| = 1 = |A| + 1, we have $|\mathcal{P}(B)| = 2$ and $|\mathcal{P}(A)| = 1$ which differ by 1.
- (d) True. Note that subsets of $\{1, 2, 3\}$ of cardinality 2 are exactly one of the followings:

$$\{1,2\}, \{2,3\}, \{1,3\}, \{1,3\}$$

Since there are only three of them, if A, B, C, and D are subsets of $\{1, 2, 3\}$ of cardinality 2, then there should be at least one repetition. This proves the claim.

Exercise 1.24 Let $A = \{1, 2\}, B = \{1, 2\}, \text{ and } C = \{1\}$. Then

$$B \neq C$$
 but $B - A = \emptyset = C - A$.

Exercise 1.46

(a) (i) We claim that

$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) = (-1, 1).$$

To prove that two sets are equal, we need to show that one includes the other and vice versa. First, we show that

$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) \subseteq (-1, 1).$$

Let $x \in \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$. By definition of union of indexed sets, we have

$$x \in \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 for some $n \ge 1$.

Therefore, we have

$$-1 \le -\frac{1}{n} < x < \frac{1}{n} \le 1.$$

In particular, $x \in (-1, 1)$. Now we show that

$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) \supseteq (-1, 1).$$

Let $x \in (-1, 1)$. Then it satisfies $x \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for n = 1. This, by definition, implies that $x \in \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.

(ii) We claim that

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

First, we show \subseteq direction. Let $x \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$. By definition of intersection of indexed sets, we have

$$x \in \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 for all $n \ge 1$.

In other words, $|x| < \frac{1}{n}$ for all $n \ge 1$. Therefore, we have

$$|x| \le \lim_{n \to \infty} \frac{1}{n} = 0$$

which implies x = 0. Note that we have changed strict inequality to inclusive inequality when we take limit. This proves \subseteq direction. Conversely, for x = 0, it is clear that

$$0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 for all $n \ge 1$.

This proves \subseteq direction, hence the claim follows.

(b) (i) We claim that

$$\bigcup_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n} \right] = [0, 2]$$

We first show \subseteq direction. Let $x \in \bigcup_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. By definition,

$$x \in \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$$
 for some $n \ge 1$.

Therefore, we have

$$0 \le 1 - \frac{1}{n} = \frac{n-1}{n} \le x \le \frac{n+1}{n} = 1 + \frac{1}{n} \le 2$$

In particular, $x \in [0,2]$. Now we show \supseteq direction. Let $x \in [0,2]$. Then it satisfies $x \in \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$ for n = 1. This implies that $x \in \bigcup_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. This proves the claim.

(ii) We claim that

$$\bigcap_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n} \right] = \{1\}.$$

First, we show \subseteq direction. Let $x \in \bigcap_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. By definition of intersection of indexed sets, we have

$$x \in \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$$
 for all $n \ge 1$.

In other words, $|x - 1| \le \frac{1}{n}$ for all $n \ge 1$. Therefore, we have

$$|x-1| \le \lim_{n \to \infty} \frac{1}{n} = 0$$

which implies x = 0. This proves \subseteq direction. Conversely, for x = 1, it is clear that

$$1 \in \left[\frac{n-1}{n}, \frac{n+1}{n}\right] = \left[1 - \frac{1}{n}, 1 + \frac{1}{n}\right] \quad \text{for all} \quad n \ge 1.$$

This proves \subseteq direction, hence the claim follows.