Partial Solutions for HW1

Exercise 1.8

(a) $A=\{-3,-2,2,3\}$
(b) $2.1, \pi$, or $\frac{7}{3}$.
(c) For $x \in \mathbb{R}$,

$$
x^{2}-(2+\sqrt{2}) x+2 \sqrt{2}=(x-2)(x-\sqrt{2})=0 \quad \text { if and only if } \quad x=2 \text { or } x=\sqrt{2},
$$

we have $C=\{2, \sqrt{2}\}$.
(d) For $x \in \mathbb{Q}$,

$$
x^{2}-(2+\sqrt{2}) x+2 \sqrt{2}=0 \quad \text { if and only if } \quad x=2
$$

because $\sqrt{2} \notin \mathbb{Q}$. Therefore $D=\{2\}$.
(e) $|A|=4,|C|=2$, and $|D|=1$.

Exercise 1.14 Fine $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for following A 's.
(a) Let $A=\{1,2\}$. Then the power set of A is

$$
\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\}
$$

and $|\mathcal{P}(A)|=4$ as expected from the formula

$$
|\mathcal{P}(A)|=2^{|A|}=2^{2}=4
$$

(b) Let $A=\{\emptyset, 1,\{a\}\}$. Then the power set of A is

$$
\mathcal{P}(A)=\{\emptyset,\{\emptyset\},\{1\},\{\{a\}\},\{1,\{a\}\},\{\{a\}, \emptyset\},\{\emptyset, 1\},\{\emptyset, 1,\{a\}\}\}
$$

and $|\mathcal{P}(A)|=8$ as expected from the formula

$$
|\mathcal{P}(A)|=2^{|A|}=2^{3}=8 .
$$

Exercise 1.20

(a) False. Let $A=\{1,\{1\}\}$. This is a counterexample of the statement because even if $\{1\} \in \mathcal{P}(A)$, we have $1 \in A$ and $\{1\} \in A$.
(b) True. Suppose $A \subset \mathcal{P}(B) \subset C$ and $|A|=2$. Then we have a strict inequalities (because \subset only means proper subset) of the cardinalities

$$
2=|A|<2^{|B|}<|C| .
$$

This implies that $|B| \geq 4$ and so $|C|>4$. This proves that $|C|$ cannot be 4 . On the other hand, $|C|$ can be 5 if we choose

$$
A=\{\emptyset,\{1\}\}, \quad B=\{1,2\}, \quad C=\{\emptyset,\{1\},\{2\},\{1,2\}, 3\} .
$$

(c) False. Let $A=\emptyset$ and $B=\{1\}$. This is a counterexample of the statement because even if $|B|=1=|A|+1$, we have $|\mathcal{P}(B)|=2$ and $|\mathcal{P}(A)|=1$ which differ by 1 .
(d) True. Note that subsets of $\{1,2,3\}$ of cardinality 2 are exactly one of the followings:

$$
\{1,2\}, \quad\{2,3\}, \quad\{1,3\} .
$$

Since there are only three of them, if A, B, C, and D are subsets of $\{1,2,3\}$ of cardinality 2 , then there should be at least one repetition. This proves the claim.
Exercise 1.24 Let $A=\{1,2\}, B=\{1,2\}$, and $C=\{1\}$. Then

$$
B \neq C \quad \text { but } \quad B-A=\emptyset=C-A .
$$

Exercise 1.46

(a) (i) We claim that

$$
\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)=(-1,1) .
$$

To prove that two sets are equal, we need to show that one includes the other and vice versa. First, we show that

$$
\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right) \subseteq(-1,1)
$$

Let $x \in \bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)$. By definition of union of indexed sets, we have

$$
x \in\left(-\frac{1}{n}, \frac{1}{n}\right) \quad \text { for some } \quad n \geq 1
$$

Therefore, we have

$$
-1 \leq-\frac{1}{n}<x<\frac{1}{n} \leq 1
$$

In particular, $x \in(-1,1)$. Now we show that

$$
\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right) \supseteq(-1,1) .
$$

Let $x \in(-1,1)$. Then it satisfies $x \in\left(-\frac{1}{n}, \frac{1}{n}\right)$ for $n=1$. This, by definition, implies that $x \in \bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)$.
(ii) We claim that

$$
\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\} .
$$

First, we show \subseteq direction. Let $x \in \bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)$. By definition of intersection of indexed sets, we have

$$
x \in\left(-\frac{1}{n}, \frac{1}{n}\right) \quad \text { for all } \quad n \geq 1
$$

In other words, $|x|<\frac{1}{n}$ for all $n \geq 1$. Therefore, we have

$$
|x| \leq \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

which implies $x=0$. Note that we have changed strict inequality to inclusive inequality when we take limit. This proves \subseteq direction. Conversely, for $x=0$, it is clear that

$$
0 \in\left(-\frac{1}{n}, \frac{1}{n}\right) \quad \text { for all } \quad n \geq 1
$$

This proves \subseteq direction, hence the claim follows.
(b) (i) We claim that

$$
\bigcup_{n=1}^{\infty}\left[\frac{n-1}{n}, \frac{n+1}{n}\right]=[0,2]
$$

We first show \subseteq direction. Let $x \in \bigcup_{n=1}^{\infty}\left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. By definition,

$$
x \in\left[\frac{n-1}{n}, \frac{n+1}{n}\right] \quad \text { for some } \quad n \geq 1 .
$$

Therefore, we have

$$
0 \leq 1-\frac{1}{n}=\frac{n-1}{n} \leq x \leq \frac{n+1}{n}=1+\frac{1}{n} \leq 2 .
$$

In particular, $x \in[0,2]$. Now we show \supseteq direction. Let $x \in[0,2]$. Then it satisfies $x \in\left[\frac{n-1}{n}, \frac{n+1}{n}\right]$ for $n=1$. This implies that $x \in \bigcup_{n=1}^{\infty}\left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. This proves the claim.
(ii) We claim that

$$
\bigcap_{n=1}^{\infty}\left[\frac{n-1}{n}, \frac{n+1}{n}\right]=\{1\} .
$$

First, we show \subseteq direction. Let $x \in \bigcap_{n=1}^{\infty}\left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. By definition of intersection of indexed sets, we have

$$
x \in\left[\frac{n-1}{n}, \frac{n+1}{n}\right] \text { for all } n \geq 1
$$

In other words, $|x-1| \leq \frac{1}{n}$ for all $n \geq 1$. Therefore, we have

$$
|x-1| \leq \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

which implies $x=0$. This proves \subseteq direction. Conversely, for $x=1$, it is clear that

$$
1 \in\left[\frac{n-1}{n}, \frac{n+1}{n}\right]=\left[1-\frac{1}{n}, 1+\frac{1}{n}\right] \quad \text { for all } \quad n \geq 1
$$

This proves \subseteq direction, hence the claim follows.

