Partial Solutions for HW2

Exercise 1.52 Consider the following subsets of \mathbb{N} :

$$
A_{1}=\{3 n: n \in \mathbb{N}\}, \quad A_{2}=\{3 n+1: n \in \mathbb{N}\}, \quad A_{3}=\{3 n+2: n \in \mathbb{N}\}
$$

They are nonempty collection of subsets of \mathbb{N}. They partition \mathbb{N} because if we divide any natural number $k \in \mathbb{N}$ by 3 then its remainder is either 0,1 , or 2 . Therefore

$$
S=\left\{A_{1}, A_{2}, A_{3}\right\}
$$

is an example of a partition of \mathbb{N} by three subsets.

Exercise 1.72

We claim that

$$
\begin{equation*}
\{A \times A, A \times B, B \times A, B \times B\} \tag{1}
\end{equation*}
$$

is a partition of $S \times S$ by 4 subsets. This will follow from the fact that $\{A, B\}$ partitions S.

1. nonempty: It is clear that they are all nonempty because

$$
|A \times A|=|A| \cdot|A|=4, \quad|A \times B|=|B \times A|=|A| \cdot|B|=4, \quad|B \times B|=|B| \cdot|B|=4 .
$$

2. Pairwise disjoint: Take any two elements in (1), say X and Y. We want to show that either $X=Y$ or $X \cap Y=\emptyset$. Equivalently, we will show that

$$
\text { if } X \cap Y \neq \emptyset, \quad \text { then } \quad X=Y \text {. }
$$

Suppose $X \cap Y \neq \emptyset$. Pick any $(p, q) \in X \cap Y$. Since $p \in S$ and S is partitioned by A and B, p belongs to exactly one of A or B. Similarly, q belongs to exactly one of A or B. There are 4 possibilities here. As an example, let's say $p \in A$ and $q \in B$. Then only possibility for X and Y will be $A \times B$, in particular, $X=Y$. In general, position of p and q in terms of A and B will determine the subset X and Y of $S \times S$. Therefore $X=Y$.
3. Union is everything: Now we will show that

$$
S \times S=(A \times A) \cup(A \times B) \cup(B \times A) \cup(B \times B)
$$

This means that for any $(p, q) \in S \times S$, it belongs to at least one element in (1). Since $p, q \in S$, each of them belong to at least one of A or B. (In fact, they belong to exactly one of A or B, but we won't need this for now). As before, there are 4 possibilities. As an example, let's say that $p \in B$ and $q \in B$. Then $(p, q) \in B \times B$. In any other cases, one can show that (p, q) belongs to at least one of $A \times A, A \times B, B \times A, B \times B$. This completes the proof.

Exercise 4.46 Prove that $A \cup B=A \cap B$ if and only if $A=B$.
$\Longleftarrow:$ Suppose $A=B$. Then it is clear that $A \cup B=A=A \cap B$.
\Longrightarrow : Suppose $A \cup B=A \cap B$. Then we have

$$
A \subseteq A \cup B=A \cap B \subseteq B
$$

Similarly,

$$
B \subseteq A \cup B=A \cap B \subseteq A
$$

Therefore $A=B$.
Exercise 4.56 Prove that $(A-B) \cup(A-C)=A-(B \cap C)$.
Proof.

$$
\begin{aligned}
x \in(A-B) \cup(A-C) & \Longleftrightarrow x \in(A-B) \text { or } x \in(A-C) \\
& \Longleftrightarrow[x \in A \text { and } x \notin B] \text { or }[x \in A \text { and } x \notin C] \\
& \Longleftrightarrow x \in A \text { and }[x \notin B \text { or } x \notin C] \\
& \Longleftrightarrow x \in A \text { and } \sim[x \in B \text { and } x \in C] \\
& \Longleftrightarrow x \in A \text { and } \sim[x \in B \cap C] \\
& \Longleftrightarrow x \in A \text { and } x \notin B \cap C \\
& \Longleftrightarrow x \in A-(B \cap C) .
\end{aligned}
$$

Exercise 4.68 Prove that $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
Proof.

$$
\begin{aligned}
(x, y) \in(A \times B) \cap(C \times D) & \Longleftrightarrow(x, y) \in A \times B \text { and }(x, y) \in C \times D \\
& \Longleftrightarrow[x \in A \text { and } y \in B] \text { and }[x \in C \text { and } y \in D] \\
& \Longleftrightarrow[x \in A \text { and } x \in C] \text { and }[y \in B \text { and } y \in D] \\
& \Longleftrightarrow x \in A \cap C \text { and } y \in B \cap D \\
& \Longleftrightarrow(x, y) \in(A \cap C) \times(B \cap D) .
\end{aligned}
$$

