Partial Solutions for HW3

Exercise 2.20 For statements P and Q, construct a truth table for $(P \Rightarrow Q) \Rightarrow(\sim Q)$.

P	Q	$P \Rightarrow Q$	$(\sim Q)$	$(P \Rightarrow Q) \Rightarrow(\sim Q)$
T	T	T	F	F
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Exercise 2.32 We will give an uniform treatment for each case as follows. Define

$$
\begin{aligned}
A & :=\{x \in S \mid P(x) \text { is true }\} \\
B & :=\{x \in S \mid Q(x) \text { is true }\} .
\end{aligned}
$$

Since

$$
P(x) \Rightarrow Q(x) \equiv(\sim P(x)) \vee(P(x) \wedge Q(x)),
$$

the set of all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is true is given by

$$
\{x \in S \mid P(x) \Rightarrow Q(x) \text { is true }\}=\bar{A} \cup(A \cap B) .
$$

(a) $P(x): x-3=4 ; Q(x): x \geq 8 ; S=\mathbb{R}$.

We have

$$
A=\{7\}, \quad B=[8, \infty) .
$$

Therefore

$$
\begin{aligned}
\bar{A} \cup(A \cap B) & =\overline{\{7\}} \cup(\{7\} \cap[8, \infty)) \\
& =\{x \in \mathbb{R} \mid x \neq 7\} \cup \emptyset \\
& =\{x \in \mathbb{R} \mid x \neq 7\} .
\end{aligned}
$$

(b) $P(x): x^{2} \geq 1 ; Q(x): x \geq 1 ; S=\mathbb{R}$.

We have

$$
A=\left\{x \in \mathbb{R} \mid x^{2} \geq 1\right\}=(-\infty,-1] \cup[1, \infty), \quad B=[1, \infty)
$$

Therefore

$$
\begin{aligned}
\bar{A} \cup(A \cap B) & =(-1,1) \cup(((-\infty,-1] \cup[1, \infty)) \cap[1, \infty)) \\
& =(-1,1) \cup[1, \infty) \\
& =(-1, \infty) \\
& =\{x \in \mathbb{R} \mid x>-1\} .
\end{aligned}
$$

(c) $P(x): x^{2} \geq 1 ; Q(x): x \geq 1 ; S=\mathbb{N}$.

We have

$$
A=\left\{x \in \mathbb{N} \mid x^{2} \geq 1\right\}=\mathbb{N}, \quad B=\{x \in \mathbb{N} \mid x \geq 1\}=\mathbb{N}
$$

Therefore

$$
\begin{aligned}
\bar{A} \cup(A \cap B) & =\emptyset \cup(\mathbb{N} \cap \mathbb{N}) \\
& =\mathbb{N} .
\end{aligned}
$$

(d) $P(x): x \in[-1,2] ; Q(x): x^{2} \leq 2 ; S=[-1,1]$. We have

$$
A=\{x \in[-1,1] \mid x \in[-1,2]\}=S, \quad B=\left\{x \in[-1,1] \mid x^{2} \leq 2\right\}=S
$$

This is because for any $x \in S=[-1,1]$, it satisfies both $x \in[-1,2]$ and $x^{2} \leq 1 \leq 2$. Therefore

$$
\begin{aligned}
\bar{A} \cup(A \cap B) & =\emptyset \cup(S \cap S) \\
& =S \\
& =[-1,1] .
\end{aligned}
$$

Exercise 2.56 We want to show that $(\sim Q) \Rightarrow(P \wedge(\sim P))$ and Q are logically equivalent. We do this by drawing the truth table.

P	Q	$(\sim P)$	$(P \wedge(\sim P))$	$(\sim Q)$	$(\sim Q) \Rightarrow(P \wedge(\sim P))$
T	T	F	F	F	T
T	F	F	F	T	F
F	T	T	F	F	T
F	F	T	F	T	F

Since truth value of $(\sim Q) \Rightarrow(P \wedge(\sim P))$ and Q are identical no matter what truth value of P and Q are, they are logically identical.
Exercise 2.72
(a) True. Take $x=0 \in \mathbb{R}$. It clearly satisfies $x^{2}-x=0$.
(b) True. For any $n \in \mathbb{N}$, we have $n \geq 1$ hence $n+1 \geq 1+1=2$.
(c) False. Take $x=-1 \in \mathbb{R}$. Then $\sqrt{(-1)^{2}}=\sqrt{1}=1 \neq-1$.
(d) True. Take $x=3 \in \mathbb{Q}$. It clearly satisfies $3 x^{2}-27=0$.
(e) True. Take $x=5 \in \mathbb{R}$ and $y=0 \in \mathbb{R}$. They clearly satisfies $x+y+3=8$.
(f) False. Take $x=y=0 \in \mathbb{R}$. Then $x+y+3=3 \neq 8$.
(g) True. Take $x=3 \in \mathbb{R}$ and $y=0 \in \mathbb{R}$. They clearly satisfies $x^{2}+y^{2}=9$.
(h) False. Take $x=y=0 \in \mathbb{R}$. Then $x^{2}+y^{2}=0 \neq 9$.

Exercise 2.78

(a) For any circle C_{1} in the plane with center $(0,0)$, there exists a circle C_{2} in the plane with center $(1,1)$ such that C_{1} and C_{2} have exactly two points in common.
(b)

$$
\exists C_{1} \in A, \forall C_{2} \in B, \sim P\left(C_{1}, C_{2}\right)
$$

(c) There exists a circle C_{1} in the plane with center $(0,0)$ such that for any circle C_{2} in the plane with center (1,1), C_{1} and C_{2} do not have exactly two points in common.

Alternative answer: There exists a circle in the plane with center $(0,0)$ with which no circle in the plane with center $(1,1)$ intersect have exactly two points in common.

