Partial Solutions for HW3

Exercise 2.20 For statements P and Q, construct a truth table for $(P \Rightarrow Q) \Rightarrow (\sim Q)$.

P	Q	$P \Rightarrow Q$	$(\sim Q)$	$(P \Rightarrow Q) \Rightarrow (\sim Q)$
Т	Т	Т	F	F
Т	F	F	Т	Т
\mathbf{F}	Т	Т	F	\mathbf{F}
\mathbf{F}	F	Т	Т	Т

Exercise 2.32 We will give an uniform treatment for each case as follows. Define

$$A := \{ x \in S \mid P(x) \text{ is true } \}$$
$$B := \{ x \in S \mid Q(x) \text{ is true } \}.$$

Since

$$P(x) \Rightarrow Q(x) \equiv (\sim P(x)) \lor (P(x) \land Q(x)),$$

the set of all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is true is given by

$${x \in S | P(x) \Rightarrow Q(x) \text{ is true}} = \overline{A} \cup (A \cap B).$$

(a) P(x): x - 3 = 4; $Q(x): x \ge 8$; $S = \mathbb{R}$. We have

$$A = \{7\}, \quad B = [8, \infty).$$

Therefore

$$\overline{A} \cup (A \cap B) = \{7\} \cup (\{7\} \cap [8, \infty))$$
$$= \{x \in \mathbb{R} \mid x \neq 7\} \cup \emptyset$$
$$= \{x \in \mathbb{R} \mid x \neq 7\}.$$

(b) $P(x): x^2 \ge 1; \ Q(x): x \ge 1; \ S = \mathbb{R}.$ We have

$$A = \{x \in \mathbb{R} \mid x^2 \ge 1\} = (-\infty, -1] \cup [1, \infty), \quad B = [1, \infty).$$

Therefore

$$\overline{A} \cup (A \cap B) = (-1, 1) \cup \left(\left((-\infty, -1] \cup [1, \infty) \right) \cap [1, \infty) \right)$$
$$= (-1, 1) \cup [1, \infty)$$
$$= (-1, \infty)$$
$$= \{ x \in \mathbb{R} \mid x > -1 \}.$$

(c) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbb{N}.$ We have

$$A = \{x \in \mathbb{N} \, | \, x^2 \ge 1\} = \mathbb{N}, \quad B = \{x \in \mathbb{N} \, | \, x \ge 1\} = \mathbb{N}.$$

Therefore

$$\overline{A} \cup (A \cap B) = \emptyset \cup (\mathbb{N} \cap \mathbb{N})$$
$$= \mathbb{N}.$$

(d) $P(x): x \in [-1, 2]; Q(x): x^2 \le 2; S = [-1, 1].$ We have

$$A = \left\{ x \in [-1,1] \mid x \in [-1,2] \right\} = S, \quad B = \left\{ x \in [-1,1] \mid x^2 \le 2 \right\} = S.$$

This is because for any $x \in S = [-1, 1]$, it satisfies both $x \in [-1, 2]$ and $x^2 \leq 1 \leq 2$. Therefore

$$\overline{A} \cup (A \cap B) = \emptyset \cup (S \cap S)$$
$$= S$$
$$= [-1, 1].$$

Exercise 2.56 We want to show that $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are logically equivalent. We do this by drawing the truth table.

P	Q	$(\sim P)$	$(P \land (\sim P))$	$(\sim Q)$	$(\sim Q) \Rightarrow (P \land (\sim P))$
Т	Т	F	F	F	Т
T	F	F	F	Т	F
F	Т	Т	\mathbf{F}	F	Т
F	F	Т	\mathbf{F}	Т	F

Since truth value of $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are identical no matter what truth value of P and Q are, they are logically identical.

Exercise 2.72

- (a) <u>True.</u> Take $x = 0 \in \mathbb{R}$. It clearly satisfies $x^2 x = 0$.
- (b) <u>True.</u> For any $n \in \mathbb{N}$, we have $n \ge 1$ hence $n + 1 \ge 1 + 1 = 2$.
- (c) <u>False</u>. Take $x = -1 \in \mathbb{R}$. Then $\sqrt{(-1)^2} = \sqrt{1} = 1 \neq -1$.
- (d) <u>True.</u> Take $x = 3 \in \mathbb{Q}$. It clearly satisfies $3x^2 27 = 0$.
- (e) <u>True.</u> Take $x = 5 \in \mathbb{R}$ and $y = 0 \in \mathbb{R}$. They clearly satisfies x + y + 3 = 8.
- (f) <u>False.</u> Take $x = y = 0 \in \mathbb{R}$. Then $x + y + 3 = 3 \neq 8$.
- (g) True. Take $x = 3 \in \mathbb{R}$ and $y = 0 \in \mathbb{R}$. They clearly satisfies $x^2 + y^2 = 9$.
- (h) <u>False</u>. Take $x = y = 0 \in \mathbb{R}$. Then $x^2 + y^2 = 0 \neq 9$.

Exercise 2.78

- (a) For any circle C_1 in the plane with center (0,0), there exists a circle C_2 in the plane with center (1,1) such that C_1 and C_2 have exactly two points in common.
- (b)

$$\exists C_1 \in A, \ \forall C_2 \in B, \ \sim P(C_1, C_2).$$

(c) There exists a circle C_1 in the plane with center (0,0) such that for any circle C_2 in the plane with center (1,1), C_1 and C_2 do not have exactly two points in common.

<u>Alternative answer:</u> There exists a circle in the plane with center (0,0) with which no circle in the plane with center (1,1) intersect have exactly two points in common.