Partial Solutions for HW4

Exercise 14.4 Prove that the sequence $\left\{\frac{1}{n^{2}+1}\right\}$ converges to 0 .
Proof. Let $\epsilon>0$.
Want : $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|\frac{1}{n^{2}+1}-0\right|<\epsilon$.
We analyze the desired inequality as follows:

$$
\begin{aligned}
\left|\frac{1}{n^{2}+1}-0\right|<\epsilon & \Longleftrightarrow n^{2}+1>\frac{1}{\epsilon} \\
& \Longleftrightarrow n^{2}>\frac{1}{\epsilon}-1 \\
& \Longleftrightarrow n>\sqrt{\left|\frac{1}{\epsilon}-1\right|} .
\end{aligned}
$$

Note that the last line is not "iff" in general since $\frac{1}{\epsilon}-1$ can be negative. In any case, we only need one direction which implies the desired inequality. Now we just pick any big enough natural number N which satisfies

$$
N>\sqrt{\left|\frac{1}{\epsilon}-1\right|} .
$$

We can find such N because ϵ is now fixed. This completes the proof.

Exercise 9.18 Let $A=\{1,2,3,4\}$. Give an example of a relation on A that is:
(a) reflexive and symmetric but not transitive.

Define

$$
R:=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(2,1),(3,2)\} .
$$

It is clearly reflexive and symmetric. But it is not transitive because $(1,2),(2,3) \in R$ but $(1,3) \notin R$.
(c) symmetric and transitive but not reflexive.

Define

$$
R:=\{(1,1)\}
$$

It is clearly symmetric and transitive. But it is not reflexive because $(2,2) \notin R$.
(e) symmetric but neither reflexive nor transitive. Define

$$
R:=\{(1,2),(2,1)\} .
$$

It is clearly symmetric. But it is not reflexive because $(1,1) \notin R$. Also, it is not transitive because $(1,2),(2,1) \in R$ but $(1,1) \notin R$.

Exercise 9.34 Let H be a nonempty subset of \mathbb{Z}. Suppose that the relation on R defined on Z by $a R b$ if $a-b \in H$ is an equivalence relation. Verify the following:
(a) $0 \in H$.

Proof. Let $n \in \mathbb{Z}$. By reflexive property, we have $n R n$, i.e., $0=n-n \in H$.
(b) If $a \in H$, then $-a \in H$.

Proof. Suppose $a \in H$. Note that $a R 0$ because $a-0=a \in H$. By symmetric property, we also have $0 R a$, i.e., $-a=0-a \in H$.
(c) If $a, b \in H$, then $a+b \in H$.

Proof. Suppose $a, b \in H$. We claim that

$$
(a+b) R b \quad \text { and } \quad b R 0
$$

First claim is because $(a+b)-b=a \in H$. Second claim is because $b-0=b \in H$. By transitive property, we have $(a+b) R 0$, i.e., $a+b=(a+b)-0 \in H$.
Exercise 9.46 Let R be the relation defined on \mathbb{Z} by $a R b$ if $a+b \equiv 0(\bmod 3)$. Show that R is not an equivalence relation.

Proof. 1) It is not reflexive. Consider $a=b=1$. Then $a+b \equiv 2(\bmod 3)$. This is not equivalent to 0 , hence $(1,1) \notin R$.
2) It is symmetric.
3) It is not transitive. Consider $a=1, b=2, c=1$. Then $a+b \equiv b+c \equiv 0(\bmod 3)$, but $a+c \equiv 2(\bmod 3)$. This is not equivalent to 0 . Therefore $(a, b),(b, c) \in R$ but $(a, c) \notin R$.

Exercise 9.58 Prove that the multiplication in $\mathbb{Z}_{n}, n \geq 2$, defined by $[a][b]=[a b]$ is welldefined.

Proof. We need to show that resulting residue class $[a b]$ does not depend on the choice of representatives of $[a]$ and $[b]$. To this end, suppose

$$
[a]=\left[a^{\prime}\right] \quad \text { and } \quad[b]=\left[b^{\prime}\right] .
$$

We want to show that

$$
[a b]=\left[a^{\prime} b^{\prime}\right]
$$

By the assumption, n divides $a^{\prime}-a$ and $b^{\prime}-b$. Therefore there exist some integers $p, q \in \mathbb{Z}$ such that

$$
a^{\prime}-a=n p \quad \text { and } \quad b^{\prime}-b=n q .
$$

We have

$$
\begin{aligned}
a^{\prime} b^{\prime}-a b & =(a+n p)(b+n q)-a b \\
& =n(p b+a q+n p q) .
\end{aligned}
$$

Therefore n divides $a^{\prime} b^{\prime}-a b$, hence $[a b]=\left[a^{\prime} b^{\prime}\right]$.

