Partial Solutions for HW4

Exercise 14.4 Prove that the sequence $\left\{\frac{1}{n^2+1}\right\}$ converges to 0.

Proof. Let $\epsilon > 0$.

Want:
$$N \in \mathbb{N}$$
 such that if $n \ge N$ then $\left| \frac{1}{n^2 + 1} - 0 \right| < \epsilon$.

We analyze the desired inequality as follows:

$$\frac{1}{n^2 + 1} - 0 \bigg| < \epsilon \iff n^2 + 1 > \frac{1}{\epsilon}$$
$$\iff n^2 > \frac{1}{\epsilon} - 1$$
$$\iff n > \sqrt{\bigg|\frac{1}{\epsilon} - 1\bigg|}.$$

Note that the last line is not "iff" in general since $\frac{1}{\epsilon} - 1$ can be negative. In any case, we only need one direction which implies the desired inequality. Now we just pick any big enough natural number N which satisfies

$$N > \sqrt{\left|\frac{1}{\epsilon} - 1\right|}.$$

We can find such N because ϵ is now fixed. This completes the proof.

Exercise 9.18 Let $A = \{1, 2, 3, 4\}$. Give an example of a relation on A that is:

(a) reflexive and symmetric but not transitive. Define

 $R := \{ (1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (2,1), (3,2) \}.$

It is clearly reflexive and symmetric. But it is not transitive because $(1,2), (2,3) \in R$ but $(1,3) \notin R$.

(c) symmetric and transitive but not reflexive. Define

$$R := \{(1,1)\}$$

It is clearly symmetric and transitive. But it is not reflexive because $(2,2) \notin R$.

(e) symmetric but neither reflexive nor transitive. Define

$$R := \{(1,2), (2,1)\}.$$

It is clearly symmetric. But it is not reflexive because $(1,1) \notin R$. Also, it is not transitive because $(1,2), (2,1) \in R$ but $(1,1) \notin R$.

Exercise 9.34 Let H be a nonempty subset of \mathbb{Z} . Suppose that the relation on R defined on Z by a R b if $a - b \in H$ is an equivalence relation. Verify the following:

(a) $0 \in H$.

Proof. Let $n \in \mathbb{Z}$. By reflexive property, we have n R n, i.e., $0 = n - n \in H$.

(b) If $a \in H$, then $-a \in H$.

Proof. Suppose $a \in H$. Note that a R 0 because $a - 0 = a \in H$. By symmetric property, we also have 0 R a, i.e., $-a = 0 - a \in H$.

(c) If $a, b \in H$, then $a + b \in H$.

Proof. Suppose $a, b \in H$. We claim that

$$(a+b) R b$$
 and $b R 0$.

First claim is because $(a + b) - b = a \in H$. Second claim is because $b - 0 = b \in H$. By transitive property, we have (a + b) R 0, i.e., $a + b = (a + b) - 0 \in H$.

Exercise 9.46 Let R be the relation defined on \mathbb{Z} by a R b if $a + b \equiv 0 \pmod{3}$. Show that R is not an equivalence relation.

Proof. 1) It is not reflexive. Consider a = b = 1. Then $a + b \equiv 2 \pmod{3}$. This is not equivalent to 0, hence $(1,1) \notin R$.

2) It is symmetric.

3) It is not transitive. Consider a = 1, b = 2, c = 1. Then $a + b \equiv b + c \equiv 0 \pmod{3}$, but $a + c \equiv 2 \pmod{3}$. This is not equivalent to 0. Therefore $(a, b), (b, c) \in R$ but $(a, c) \notin R$. \Box

Exercise 9.58 Prove that the multiplication in \mathbb{Z}_n , $n \geq 2$, defined by [a][b] = [ab] is well-defined.

Proof. We need to show that resulting residue class [ab] does not depend on the choice of representatives of [a] and [b]. To this end, suppose

$$[a] = [a']$$
 and $[b] = [b']$.

We want to show that

$$[ab] = [a'b'].$$

By the assumption, n divides a' - a and b' - b. Therefore there exist some integers $p, q \in \mathbb{Z}$ such that

$$a'-a = np$$
 and $b'-b = nq$.

We have

$$a'b' - ab = (a + np)(b + nq) - ab$$
$$= n(pb + aq + npq).$$

Therefore *n* divides a'b' - ab, hence [ab] = [a'b'].