Partial Solutions for HW5

Exercise 9.52 Let R be the relation defined on \mathbb{Z} by $a R b$ if $a^{2} \equiv b^{2}(\bmod 5)$. Prove that R is an equivalence relation and determine the distinct equivalence classes.

Proof.

1. Reflexive: Pick any $a \in \mathbb{Z}$. Since $a^{2}-a^{2}=0$ is divisible by 5 , we have $a^{2} \equiv a^{2}(\bmod 5)$ hence $a R a$.
2. Symmetric: Suppose $a R b$, i.e., $a^{2} \equiv b^{2}(\bmod 5)$. By definition, there exists an integer $k \in \mathbb{Z}$ such that $a^{2}-b^{2}=5 k$. Since $b^{2}-a^{2}=5(-k)$, we have $b^{2} \equiv a^{2}(\bmod 5)$, i.e., $b R a$.
3. Transitive: Suppose $a R b$ and $b R c$. This means that there exist integers $k_{1}, k_{2} \in \mathbb{Z}$ such that

$$
a^{2}-b^{2}=5 k_{1} \quad \text { and } \quad b^{2}-c^{2}=5 k_{2} .
$$

By adding up two equalities, we have

$$
a^{2}-c^{2}=\left(a^{2}-b^{2}\right)+\left(b^{2}-c^{2}\right)=5\left(k_{1}+k_{2}\right) .
$$

Since $k_{1}+k_{2}$ is an integer, we have $a^{2} \equiv c^{2}(\bmod 5)$ hence $a R c$.
Now we determine the distinct equivalence classes. The equivalence class including a is

$$
\begin{aligned}
{[a] } & =\left\{b \in \mathbb{Z}: a^{2} \equiv b^{2}(\bmod 5)\right\} \\
& =\left\{b \in \mathbb{Z}: 5 \text { divides } b^{2}-a^{2}=(b-a)(b+a)\right\} \\
& =\{b \in \mathbb{Z}: 5 \mid(b-a) \text { or } 5 \mid(b+a)\} \\
& =\{b \in \mathbb{Z}: 5 \mid(b-a)\} \cup\{b \in \mathbb{Z}: 5 \mid(b+a)\} \\
& =\{b \in \mathbb{Z}: b-a=5 k, k \in \mathbb{Z}\} \cup\{b \in \mathbb{Z}: b+a=5 k, k \in \mathbb{Z}\} \\
& =\{a+5 k: k \in \mathbb{Z}\} \cup\{-a+5 k: k \in \mathbb{Z}\},
\end{aligned}
$$

where we used the primality of 5 in the third equality. Applying this to the case when $a=0,1,2$, we obtain

$$
\begin{aligned}
{[0] } & =\{5 k: k \in \mathbb{Z}\} \\
{[1] } & =\{1+5 k: k \in \mathbb{Z}\} \cup\{-1+5 k: k \in \mathbb{Z}\} \\
& =\{1+5 k: k \in \mathbb{Z}\} \cup\{4+5 k: k \in \mathbb{Z}\} \\
{[2] } & =\{2+5 k: k \in \mathbb{Z}\} \cup\{-2+5 k: k \in \mathbb{Z}\} \\
& =\{2+5 k: k \in \mathbb{Z}\} \cup\{3+5 k: k \in \mathbb{Z}\} .
\end{aligned}
$$

Note that these are all distinct equivalence classes because every integer belongs to at least one of them depending on the residue modulo 5 .

Exercise 9.60 For integers $m, n \geq 2$ consider \mathbb{Z}_{m} and \mathbb{Z}_{n}. Let $[a] \in \mathbb{Z}_{m}$ where $0 \leq a \leq m-1$. Then $a, a+m \in[a]$ in \mathbb{Z}_{m}. If $a, a+m \in[b]$ for some $[b] \in \mathbb{Z}_{n}$, then what can be said of m and n ?

Solution. Suppose that $a, a+m \in[b]$ for some $[b] \in \mathbb{Z}_{n}$. Note that element belongs to the same equivalence class if and only if they are related. Therefore a and $a+m$ have same residue modulo n, i.e., n divides $(a+m)-a=n$. So we conclude that n divides m.

Exercise 10.4 For the given subset A_{i} of \mathbb{R} and the relation $R_{i}(1 \leq i \leq 3)$ from A_{i} to \mathbb{R}, determine whether R_{i} is a function from A_{i} to \mathbb{R}.
(a) $A_{1}=\mathbb{R}, R_{1}=\left\{(x, y): x \in A_{1}, y=4 x-3\right\}$

This is a function. For any given element x in the domain \mathbb{R}, we have uniquely determined element $y=4 x-3$ in the codomain \mathbb{R}.
(b) $A_{2}=[0, \infty), R_{2}=\left\{(x, y): x \in A_{2},(y+2)^{2}=x\right\}$

This is not a function. For an element $1 \in[0, \infty)$, the relation does not determine the value y in the codomain \mathbb{R} uniquely because both $y=-1$ and $y=-3$ satisfies

$$
(y+2)^{2}=1
$$

Using the language of the relation, this can be written as $1 R_{2}(-1)$ and $1 R_{2}(-3)$.
(c) $A_{3}=\mathbb{R}, R_{3}=\left\{(x, y): x \in A_{3},(x+y)^{2}=4\right\}$

This is not a function. Note that

$$
(x+y)^{2}=4 \Longleftrightarrow(x+y)=2 \text { or }(x+y)=-2
$$

Therefore, for each element x in the domain \mathbb{R}, we have two different element y in the codomain related to x, namely

$$
y=-x+2 \text { or } y=-x-2 .
$$

For example, we have $0 R_{3} 2$ and $0 R_{3}(-2)$.
Exercise 10.8 Let $A=\{5,6\}, B=\{5,7,8\}$ and $S=\{n: n \geq 3$ is an odd integer. $\}$. A relation R from $A \times B$ to S is defined as $(a, b) R s$ if $s \mid(a+b)$. Is R a function from $A \times B$ to S ?

Solution. Yes, it is a function. We need to show that for each $(a, b) \in A \times B,(a+b)$ has an unique odd divisor greater than or equal to 3 . For this problem, there are essentially no better ways to see this than the case study. One can easily check that the possible values of $(a+b)$ for each pair $(a, b) \in A \times B$ are the followings:

$$
10, \quad 11, \quad 12, \quad 13, \quad 14
$$

It is clear that each of them has exactly one odd divisor greater than or equal to 3 , namely $5,11,3,13,7$, respectively.

Exercise 10.16

(a) Give an example of sets A and B such that $\left|B^{A}\right|=8$.

It is known that for each finite sets A and B, we have

$$
\left|B^{A}\right|=|B|^{|A|} .
$$

Therefore, any choice of sets A and B with $|A|=3$ and $|B|=2$ work because

$$
\left|B^{A}\right|=|B|^{|A|}=2^{3}=8
$$

To be more specific,

$$
A=\{1,2,3\}, \quad B=\{4,5\}
$$

gives such an example.
(b) Give an example of an element in B^{A} for the sets A and B given in (a).

By definition, element $f \in B^{A}$ is a function $f: A \rightarrow B$. We have a following example:

$$
f(1)=4, \quad f(2)=5, \quad f(3)=4
$$

In the language of the relation, this is denoted by $f=\{(1,4),(2,5),(3,4)\} \subseteq B \times A$.

