Partial Solutions for HW6

Exercise 10.12 For a function $f: A \rightarrow B$ and subsets C and D of A and E and F of B, prove the following.
(a) $f(C \cup D)=f(C) \cup f(D)$

Proof. For $y \in B$, we have

$$
\begin{aligned}
y \in f(C \cup D) & \Longleftrightarrow \exists x \in C \cup D \text { s.t. } y=f(x) \\
& \Longleftrightarrow[\exists x \in C \text { s.t. } y=f(x)] \vee[\exists x \in D \text { s.t. } y=f(x)] \\
& \Longleftrightarrow[y \in f(C)] \vee[y \in f(D)] \\
& \Longleftrightarrow y \in f(C) \cup f(D) .
\end{aligned}
$$

This completes the proof.
(c) $f(C)-f(D) \subseteq f(C-D)$

Proof. Let $y \in f(C)-f(D)$. Then $y \in f(C)$ but $y \notin f(D)$. Since $y \in f(C)$, there is some $x \in C$ such that $y=f(x)$. On the other hand, if x were in D, then this would imply that $y \in f(D)$ which is a contradiction. Therefore x is not in D. Since $x \in C$ and $x \notin D$, we have $x \in C-D$. From $y=f(x)$, we conclude that $y \in f(C-D)$. This completes the proof.
(e) $f^{-1}(E \cap F)=f^{-1}(E) \cap f^{-1}(F)$

Proof. For $x \in A$, we have

$$
\begin{aligned}
x \in f^{-1}(E \cap F) & \Longleftrightarrow f(x) \in E \cap F \\
& \Longleftrightarrow[f(x) \in E] \wedge[f(x) \in F] \\
& \Longleftrightarrow\left[x \in f^{-1}(E)\right] \wedge\left[x \in f^{-1}(F)\right] \\
& \Longleftrightarrow x \in f^{-1}(E) \cap f^{-1}(F)
\end{aligned}
$$

This completes the proof.
Exercise 10.20 A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=2 n+1$. Determine whether f is (a) injective, (b) surjective.
(a) We claim that f is injective. Suppose $f(n)=f(m)$ for $n, m \in \mathbb{Z}$. This means that $2 n+1=2 m+1$, or $2 n=2 m$, or $n=m$. Since $f(n)=f(m)$ implies $n=m$, the function f is injective.
(b) We claim that f is not surjective. Consider $0 \in \mathbb{Z}$ in the codomain. For the sake of contradiction, suppose that there exist $n \in \mathbb{Z}$ such that $f(n)=0$. This means $2 n+1=0$ or $n=-\frac{1}{2}$ which is not an integer. This is the contradiction and proves the claim.

Exercise 10.24 Determine whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}+4 x+9$ is (a) one-to-one, (b) onto.
(a) We claim that f is not one-to-one. Consider $x_{1}=-3$ and $x_{2}=-1$. Then $x_{1} \neq x_{2}$ but

$$
f\left(x_{1}\right)=(-3)^{2}+4(-3)+9=6=(-1)^{2}+4(-1)+9=f(-1)
$$

(b) We claim that f is not surjective. Consider $y=4$ in the codomain \mathbb{R}. Since

$$
f(x)=(x+2)^{2}+5 \geq 5 \quad \text { for all } \quad x \in \mathbb{R},
$$

there is no $x \in \mathbb{R}$ such that $f(x)=4$. So 4 is not in the range, hence f is not surjective.
Exercise 10.32 Prove that the function $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{5\}$ defined by $f(x)=\frac{5 x+1}{x-2}$ is bijective.

Proof. We prove injectivity and surjectivity.
(i) Injectivity: Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in \mathbb{R}-\{2\}$. This means

$$
\frac{5 x_{1}+1}{x_{1}-2}=\frac{5 x_{2}+1}{x_{2}-2} .
$$

By multiplying $\left(x_{1}-2\right)\left(x_{2}-2\right)$ for both sides, we obtain

$$
\left(5 x_{1}+1\right)\left(x_{2}-2\right)=\left(5 x_{2}+1\right)\left(x_{1}-2\right),
$$

or

$$
5 x_{1} x_{2}-10 x_{1}+x_{2}-2=5 x_{1} x_{2}+x_{1}-10 x_{2}-2,
$$

or

$$
-11 x_{1}=-11 x_{2},
$$

or

$$
x_{1}=x_{2} .
$$

This proves injectivity.
(ii) Surjectivity: Pick any element $y \in \mathbb{R}-\{5\}$ in the codomain. We want to find $x \in \mathbb{R}-\{2\}$ such that $f(x)=y$. We claim that

$$
x=\frac{2 y+1}{y-5}
$$

works. Since $y \neq 5$, the expression makes sense and so $x \in \mathbb{R}$. Furthermore, $x \in \mathbb{R}-\{2\}$ because otherwise it implies

$$
x=\frac{2 y+1}{y-5}=2 \Longrightarrow 2 y+1=2(y-5) \Longrightarrow 1=-10
$$

which is a contradiction. Finally, we check $f(x)=y$ by computation:

$$
f(x)=\frac{5 x+1}{x-2}=\frac{5\left(\frac{2 y+1}{y-5}\right)+1}{\left(\frac{2 y+1}{y-5}\right)-2}=\frac{5(2 y+1)+(y-5)}{(2 y+1)-2(y-5)}=\frac{11 y}{11}=y .
$$

This proves surjectivity.

Exercise 10.48 The composition $g \circ f:(0,1) \rightarrow \mathbb{R}$ of two functions f and g is given by $(g \circ f)(x)=\frac{4 x-1}{2 \sqrt{x-x^{2}}}$, where $f:(0,1) \rightarrow(-1,1)$ is defined by $f(x)=2 x-1$ for $x \in(0,1)$. Determine the function g.

Solution. We use "a" right inverse function $f^{-1}:(-1,1) \rightarrow(0,1)$ of f. Define f^{-1} by

$$
f^{-1}(x)=\frac{x+1}{2} .
$$

This is well defined because for $-1<x<1$ we have $0<\frac{x+1}{2}<1$. It is easy to check that f^{-1} is in fact a right inverse by the calculation:

$$
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(\frac{x+1}{2}\right)=2\left(\frac{x+1}{2}\right)-1=x .
$$

In fact f is both sided inverse of f, hence "the" inverse of f, but we won't need this in what follows. To determine g by using $(g \circ f)$ and f^{-1} we use the associativity of the composition. Note that

$$
(g \circ f) \circ f^{-1}=g \circ\left(f \circ f^{-1}\right)=g \circ \operatorname{id}=g .
$$

Therefore, we have

$$
\begin{aligned}
g(x) & =\left((g \circ f) \circ f^{-1}\right)(x) \\
& =(g \circ f)\left(f^{-1}(x)\right) \\
& =(g \circ f)\left(\frac{x+1}{2}\right) \\
& =\frac{4\left(\frac{x+1}{2}\right)-1}{2 \sqrt{\left(\frac{x+1}{2}\right)-\left(\frac{x+1}{2}\right)^{2}}} \\
& =\frac{2 x+1}{\sqrt{(2 x+2)-(x+1)^{2}}} \\
& =\frac{2 x+1}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

This determines the function g.

