Partial Solutions for HW7

Exercise 10.50 Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=4 x-3$ is bijective and determine $f^{-1}(x)$ for $x \in \mathbb{R}$.

Solution. We first show injectivity. Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in \mathbb{R}$. Then

$$
4 x_{1}-3=4 x_{2}-3,
$$

or

$$
4 x_{1}=4 x_{2},
$$

or

$$
x_{1}=x_{2} .
$$

Therefore f is injective. To show surjectivity, pick any element $y \in \mathbb{R}$ in the codomain. We want to find $x \in \mathbb{R}$ such that $f(x)=y$, or

$$
4 x-3=y .
$$

By solving the linear equation for x, we have

$$
x=\frac{y+3}{4} \in \mathbb{R} .
$$

Therefore f is surjective. Also, above formula says

$$
f^{-1}(y)=x=\frac{y+3}{4} .
$$

Simply changing the dummy variable for a function, we obtain

$$
f^{-1}(x)=\frac{x+3}{4} .
$$

Exercise 10.56 Let A, B and C be nonempty sets and let f, g and h be functions such that $f: A \rightarrow B$ and $g, h: B \rightarrow C$. For each of the following, prove or disprove:
(a) If $g \circ f=h \circ f$, then $g=h$.
(b) If f is one-to-one and $g \circ f=h \circ f$, then $g=h$.

Solution. We claim that both (a) and (b) are false. Note that if one can find a counter example for (b) then it is automatically a counter example for (a).

Define A, B and C as

$$
A=\{a\}, \quad B=\left\{b_{1}, b_{2}\right\}, \quad C=\left\{c_{1}, c_{2}\right\} .
$$

Define a function f by $f(a)=c_{1}$. Define functions g, h by

$$
g\left(b_{1}\right)=h\left(b_{1}\right)=c_{1}, \quad g\left(b_{2}\right)=c_{1}, h\left(b_{2}\right)=c_{2} .
$$

Note that f is clearly one-to-one because there is only one element in the domain of f. We also have $g \circ f=h \circ f$ because they both map $a \in A$ to c_{1}. However, g and h are different because $g\left(b_{2}\right) \neq h\left(b_{2}\right)$. This counter example disproves (b) and also (a).

Exercise 13.28 Prove that if 41 numbers are selected from the set $S=\{1,2, \ldots, 50\}$, then there must exist two among those chosen whose sum is 80 .

Proof. Denote a set of selected 41 numbers by X, i.e., X is a subset of S with cardinality 41. Since the biggest element of S is 50 , no element smaller than 30 can be used to sum up to 80 . Also, we exclude the case of $40+40=80$. Therefore possible elements in S to form a pair summing up to 80 are

$$
\widetilde{S}:=\{30,31, \ldots, 39,41, \ldots, 49,50\} \subset S
$$

To increase the possibility of having a pair in X summing up to 80 , we wish to have as much elements of \widetilde{S} in X. We claim that at worst we have 11 elements in common, i.e.,

$$
|\widetilde{S} \cap X| \geq 11
$$

This can be seen as follows:

$$
|S| \geq|\widetilde{S} \cup X|=|\widetilde{S}|+|X|-|\widetilde{S} \cap X|
$$

or

$$
|\widetilde{S} \cap X| \geq|\widetilde{S}|+|X|-|S|=20+41-50=11
$$

Now we consider a set

$$
T:=\{\{30,50\},\{31,49\},\{32,48\}, \ldots,\{39,41\}\}
$$

which consists of sets of pairs summing up to 80 . Let

$$
f: \widetilde{S} \cap X \rightarrow T
$$

be an obvious map defined by

$$
f(n)=\{n, 80-n\} .
$$

Since $|\widetilde{S} \cap X| \geq 11$ and $|T|=10$, by pigeon hole principle, we have

$$
\exists n_{1} \neq n_{2} \in \widetilde{S} \cap X \quad \text { s.t. } \quad f\left(n_{1}\right)=f\left(n_{2}\right) .
$$

By definition of f, this means

$$
\left\{n_{1}, 80-n_{1}\right\}=\left\{n_{2}, 80-n_{2}\right\} .
$$

Since $n_{1} \neq n_{2}$, this implies

$$
n_{1}=80-n_{2},
$$

equivalently

$$
n_{1}+n_{2}=80 .
$$

Note that $n_{1}, n_{2} \in X$, in particular. Therefore we have found a pair of distinct elements in X summing up to 80 . This completes the proof.

Exercise 13.34 Let F be a collection of subsets of $S=\{1,2, \ldots, n\}, n \geq 2$, such that if $X, Y \in F$, then $X \cap Y=\emptyset$. Prove that $|F| \leq 2^{n-1}$.

Proof. To prove by contradiction, suppose $|F|>2^{n-1}$. Consider a set

$$
T:=\{\{X, S-X\}: X \subseteq S\}
$$

consisting a set of pairs of two subsets of S complimentary to each other in S. Note that the cardinality of T is exactly half of the cardinality of the power set $\mathcal{P}(S)$ of S. Therefore

$$
|T|=\frac{|\mathcal{P}(S)|}{2}=\frac{2^{n}}{2}=2^{n-1} .
$$

Consider a map

$$
f: F \rightarrow T
$$

defined by

$$
f(X):=\{X, S-X\} .
$$

Since $|F|>2^{n-1}=|T|$, by pigeon hole principle, we have

$$
\exists X \neq Y \in F \quad \text { s.t. } \quad f(X)=f(Y) .
$$

This means

$$
\{X, S-X\}=\{Y, S-Y\} .
$$

Since $X \neq Y$, this forces that $X=S-Y$. In particular, we have

$$
X, Y \in F \quad \text { s.t. } \quad X \cap Y=\emptyset .
$$

This contradicts the assumption of the problem. This completes the proof.
Exercise 11.8 Prove that the function $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by $f(n)=\frac{1+(-1)^{n}(2 n-1)}{4}$ is bijective.
Proof. We start by analyzing the function f by dividing \mathbb{N} into even and odd parts. For odd number $n=2 k+1$ with $k \geq 0$, we have

$$
f(2 k+1)=\frac{1+(-1)^{2 k+1}(2(2 k+1)-1)}{4}=\frac{1-(4 k+1)}{4}=-k .
$$

For even number $n=2 k$ with $k \geq 1$, we have

$$
f(2 k)=\frac{1+(-1)^{2 k}(2(2 k)-1)}{4}=\frac{1+(4 k-1)}{4}=k .
$$

Now we show that f is injective. Suppose that $f\left(n_{1}\right)=f\left(n_{2}\right)$ for some $n_{1}, n_{2} \in \mathbb{N}$. We divide the case into two depending on the sign of the value $f\left(n_{1}\right)=f\left(n_{2}\right)$. Assume that $f\left(n_{1}\right)=f\left(n_{2}\right) \leq 0$. Then this forces n_{1}, n_{2} to be odd number by the above observation, hence

$$
n_{1}=2 k_{1}+1, \quad n_{2}=2 k_{2}+1
$$

But then

$$
-k_{1}=f\left(n_{1}\right)=f\left(n_{2}\right)=-k_{2},
$$

and so

$$
k_{1}=k_{2},
$$

and so

$$
n_{1}=n_{2} .
$$

Similarly, if $f\left(n_{1}\right)=f\left(n_{2}\right) \geq 1$, then this forces n_{1}, n_{2} to be even number by the above observation, hence

$$
n_{1}=2 k_{1}, \quad n_{2}=2 k_{2}
$$

But then

$$
k_{1}=f\left(n_{1}\right)=f\left(n_{2}\right)=k_{2},
$$

and so

$$
n_{1}=n_{2} .
$$

Since we obtained $n_{1}=n_{2}$ in either case, this proves the injectivity of f.
Now we prove surjectivity of f. We need to show that every integers are in the image of f. If $k \leq 0$, then

$$
f(2(-k)+1)=k
$$

where $2(-k)+1 \in \mathbb{N}$. Similarly, if $k \geq 1$, then

$$
f(2 k)=k
$$

where $2 k \in \mathbb{N}$. Therefore f is surjective.

