Partial Solutions for HW8

Exercise 11.10 Let A be a denumerable set and let $B=\{x, y\}$. Prove that $A \times B$ is denumerable.

Proof.

Method 1: Since A is denumerable, there is a bijection $f: \mathbb{N} \rightarrow A$. In other words, we can list the elements of the set A as follows:

$$
A=\left\{a_{1}, a_{2}, a_{3} \cdots\right\}
$$

Using this description of a set A, we can list the elements of the set $A \times B$ as

$$
A \times B=\left\{\left(a_{1}, x\right),\left(a_{1}, y\right),\left(a_{2}, x\right),\left(a_{2}, y\right),\left(a_{3}, x\right),\left(a_{3}, y\right), \cdots\right\} .
$$

This proves that $A \times B$ is denumerable.
Method 2: We can write $A \times B$ as a disjoint union of the following two sets

$$
A \times\{x\}, \quad A \times\{y\} .
$$

It is clear that $A \times\{x\}$ is numerically equivalent to a set A through the bijection g defined by

$$
g: A \rightarrow A \times\{x\}, \quad a \mapsto(a, x) .
$$

Similarly, $A \times\{y\}$ is also numerically equivalent to a set A. Therefore $A \times B$ is a union of two countable sets, hence countable. (In class, we have proven that even countable union of countable sets is countable.) Since $A \times B$ is infinite countable set, it is denumerable.

Exercise 11.12 Prove that the set of all 2-element subsets of \mathbb{N} is denumerable.
Proof. Any 2-element subsets of \mathbb{N} can be uniquely written as

$$
\{a, b\} \text { for some } a, b \in \mathbb{N} \text { s.t. } a<b .
$$

Therefore the set of all 2-element subsets of \mathbb{N} is in bijection to the set

$$
S:=\{(a, b) \in \mathbb{N} \times \mathbb{N}: a<b\}
$$

Note that S is naturally a subset of $\mathbb{N} \times \mathbb{N}$ which is proven to be countably infinite in class. Since S is an infinite subset of denumerable set $\mathbb{N} \times \mathbb{N}, S$ is also denumerable. This completes the proof.

Exercise 11.18 A function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined by $f(m, n)=2^{m-1}(2 n-1)$.
(a) Prove that f is one-to-one and onto.
(b) Show that $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. We start by proving injectivity of f. Suppose that

$$
f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right) \quad \text { for some } \quad\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in \mathbb{N} \times \mathbb{N}
$$

By definition of f, we have

$$
2^{m_{1}-1}\left(2 n_{1}-1\right)=2^{m_{2}-1}\left(2 n_{2}-1\right) .
$$

Without loss of generality, we may assume $m_{1} \leq m_{2}$. Dividing both sides by $2^{m_{1}-1}$, we obtain

$$
\left(2 n_{1}-1\right)=2^{m_{2}-m_{1}}\left(2 n_{2}-1\right) \in \mathbb{N} .
$$

Since LHS is odd number, RHS can not have any factor of 2 . Therefore $m_{2}-m_{1}=0$, or

$$
m_{1}=m_{2}
$$

Plugging this equality to the previous equation, we obtain

$$
2 n_{1}-1=2 n_{2}-1,
$$

or

$$
n_{1}=n_{2} .
$$

Therefore we have $\left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right)$, hence f is injective.
Now we prove surjectivity of f. Let k be any element in the codomain \mathbb{N}. Define m be the largest natural number such that 2^{m-1} divides k. There exist such m because k cannot be divided by infinitely many 2 factors. By definition of m, we have

$$
k=2^{m-1} \cdot \ell \quad \text { for some } \quad \ell \in \mathbb{N} \text {. }
$$

If ℓ were even number, we can pull out at least one more 2 factor from ℓ which contradicts the choice of m. Therefore ℓ is an odd number hence

$$
\ell=2 n-1 \quad \text { for some } \quad n \in \mathbb{N} .
$$

Thus

$$
k=2^{m-1}(2 n-1),
$$

and this proves surjectivity of f.
Exercise 11.20 Prove that the set of irrational numbers is uncountable.
Proof. We prove by contradiction. Suppose that the set $\mathbb{R}-\mathbb{Q}$ of irrational numbers is countable. We know that the set \mathbb{Q} of rational numbers is countable. Therefore the set of real numbers

$$
\mathbb{R}=(\mathbb{R}-\mathbb{Q}) \cup \mathbb{Q}
$$

is a union of two countable sets, hence countable. This contradicts the fact that \mathbb{R} is uncountable. Thus, the set of irrational numbers is uncountable.

Exercise 11.30 Let $A=\{a, b, c\}$. Then $\mathcal{P}(A)$ consists of the following subsets of A :

$$
\begin{gathered}
A_{a}=\emptyset, \quad A_{b}=A, \quad A_{c}=\{a, b\}, \quad A_{d}=\{a, c\}, \\
A_{e}=\{b, c\}, \quad A_{f}=\{a\}, \quad A_{g}=\{b\}, \quad A_{h}=\{c\} .
\end{gathered}
$$

In one part of the proof of Theorem 11.17, it was established (using a contradiction argument) that $|A|<|\mathcal{P}(A)|$ for every nonempty set A. In this argument, the existence of a bijective function $g: A \rightarrow \mathcal{P}(A)$ is assumed, where $g(x)=A_{x}$ for each $x \in A$. Then a subset B of A is defined by

$$
B=\left\{x \in A: x \notin A_{x}\right\}
$$

(a) For the sets A and $\mathcal{P}(A)$ described above, what is the set B ?
(b) What does the set B in (a) illustrate?

Solution. By definition, B is the set of all elements $x \in A$ satisfying the condition

$$
x \notin A_{x} .
$$

We check this condition for each a, b, and c.

1. $a \notin A_{a}=\emptyset$.
2. $b \in A_{b}=A$.
3. $c \notin A_{c}=\{a, b\}$.

Since a, c satisfy the condition but b doesn't, we have

$$
B=\{a, c\} .
$$

We can read from the list of all subsets of A above that

$$
B=A_{d} .
$$

This example illustrates by a concrete example that there is no surjective function $g: A \rightarrow$ $\mathcal{P}(A)$. To be more explicit, we were given a function

$$
g: A \rightarrow \mathcal{P}(A)
$$

defined by

$$
g(a)=A_{a}, \quad g(b)=A_{b}, \quad g(c)=A_{c} .
$$

A function g is not surjective because we found an element $B=A_{d} \in \mathcal{P}(A)$ which is not in the image of g.

