Partial Solutions for HW9

Exercise 6.8 Find a formula for $1+4+7+\cdots+(3 n-2)$ for positive integers n and then verify your formula by mathematical induction.

Solution. We first make a guess and then prove it by mathematical induction. Note that

$$
\begin{aligned}
1+4+7+\cdots+(3 n-2) & =\sum_{i=1}^{n}(3 i-2) \\
& =3 \sum_{i=1}^{n} i-2 \sum_{i=1}^{n} 1 \\
& =3 \cdot \frac{n(n+1)}{2}-2 n \\
& =\frac{n(3 n-1)}{2} .
\end{aligned}
$$

In fact, the above lines are more or less the proof. But we will still verify it with mathematical induction now. Since

$$
1=\frac{1 \cdot(3 \cdot 1-1)}{2}
$$

the statement is true for $n=1$. Assume that

$$
1+4+7+\cdots+(3 k-2)=\frac{k(3 k-1)}{2}
$$

where k is a positive integer. Then we have

$$
\begin{aligned}
1+4+7+\cdots+(3 k-2)+(3(k+1)-2) & =\frac{k(3 k-1)}{2}+(3 k+1) \\
& =\frac{3 k^{2}+5 k+2}{2} \\
& =\frac{(k+1)(3 k+2)}{2} \\
& =\frac{(k+1)(3(k+1)+2)}{2}
\end{aligned}
$$

which proves the statement for $k+1$.
Exercise 6.16 Prove that $7 \mid 3^{4 n+1}-5^{2 n-1}$ for every positive integer n.
Proof. We prove by mathematical induction. Since

$$
3^{5}-5^{1}=243-5=238=7 \cdot 34
$$

the statement is true for $n=1$. Assume that

$$
7 \mid 3^{4 k+1}-5^{2 k-1}
$$

where k is a positive integer. That is,

$$
\exists m \in \mathbb{Z} \quad \text { s.t. } \quad 3^{4 k+1}-5^{2 k-1}=7 m .
$$

Therefore, we have

$$
\begin{aligned}
3^{4(k+1)+1}-5^{2(k+1)-1} & =3^{4} \cdot 3^{4 k+1}-5^{2} \cdot 5^{2 k-1} \\
& =81\left(5^{2 k-1}+7 m\right)-25 \cdot 5^{2 k-1} \\
& =(81-25) 5^{2 k-1}+7 \cdot 81 \cdot m \\
& =7\left(8 \cdot 5^{2 k-1}+81 m\right) .
\end{aligned}
$$

This means that

$$
7 \mid 3^{4(k+1)+1}-5^{2(k+1)-1}
$$

which completes the proof.
Exercise 6.24 Prove Bernoulli's Identity: For every real number $x>-1$ and every positive integer n,

$$
(1+x)^{n} \geq 1+n x
$$

Proof. We prove by mathematical induction. Since

$$
(1+x) \geq 1+x \quad \forall x \in \mathbb{R}
$$

the statement is true for $n=1$. Assume that

$$
(1+x)^{k} \geq 1+k x \quad \forall x>-1
$$

where k is a positive integer. For any $x>-1$, we have

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x)(1+x)^{k} \\
& \geq(1+x)(1+k x) \\
& =1+(1+k) x+k x^{2} \\
& \geq 1+(1+k) x .
\end{aligned}
$$

We have used the fact that $x>-1$ or $(1+x)>0$ for the second line. This proves the statement for $(k+1)$, which completes the proof.

Exercise 6.34 A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=1, a_{2}=2$ and $a_{n}=a_{n-1}+2 a_{n-2}$ for $n \geq 3$. Conjecture a formula for an and verify that your conjecture is correct.

Solution. To make a guess, we compute the first few terms:

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=2 \\
& a_{3}=2+2 \cdot 1=4 \\
& a_{4}=4+2 \cdot 2=8 \\
& a_{5}=8+2 \cdot 4=16 .
\end{aligned}
$$

It is then natural to conjecture

$$
\forall n \in \mathbb{N} \quad a_{n}=2^{n-1} .
$$

We prove this conjecture by mathematical induction. Define statement

$$
P(n): a_{n}=2^{n-1} .
$$

We will prove the followings:
(i) $P(1), P(2)$ are true.
(ii) $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \Longrightarrow P(n+1)$ for all natural numbers $n \geq 2$.

By computation above, $P(1)$ and $P(2)$ are true. Now we assume $P(1), P(2), \cdots, P(n)$ where n is a positive integer greater than equal to 2 . Then we have

$$
\begin{aligned}
a_{n+1} & =a_{n}+2 a_{n-1} \\
& =2^{n-1}+2 \cdot 2^{n-2} \\
& =2^{n-1}+2^{n-1} \\
& =2^{n},
\end{aligned}
$$

where we used the statements $P(n-1)$ and $P(n)$ for the second line. This proves $P(n+1)$ and completes the proof.

Exercise 6.36 Consider the sequence $F_{1}, F_{2}, F_{3}, \ldots$ where

$$
F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5 \text { and } F_{6}=8 .
$$

The terms of this sequence are called Fibonacci numbers.
(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.
(b) Prove that $2 \mid F_{n}$ if and only if $3 \mid n$.

Proof. We define the sequence of Fibonacci numbers as

1. Initial condition: $F_{1}=F_{2}=1$.
2. Recurrence relation: $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 3$.

Define statement

$$
P(n): 2\left|F_{n} \Longleftrightarrow 3\right| n
$$

We will prove the followings:
(i) $P(1), P(2), P(3)$ are true.
(ii) $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \Longrightarrow P(n+1)$ for all natural numbers $n \geq 3$.

Note that $P(1), P(2)$ and $P(3)$ are true because $F_{3}=2$ is the only even number out of F_{1}, F_{2}, F_{3}. Now we assume $P(1), P(2), \cdots, P(n)$ where n is a positive integer greater than equal to 3 . We have

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& =\left(F_{n-1}+F_{n-2}\right)+F_{n-1} \\
& =F_{n-2}+2 \cdot F_{n-1},
\end{aligned}
$$

which implies that the parity of F_{n+1} and F_{n-2} is same. Therefore, we conclude

$$
\begin{aligned}
2 \mid F_{n+1} & \Longleftrightarrow 2 \mid F_{n-2} \\
& \Longleftrightarrow 3 \mid(n-2) \\
& \Longleftrightarrow 3 \mid(n-2)+3 \\
& \Longleftrightarrow 3 \mid(n+1) .
\end{aligned}
$$

This proves $P(n+1)$ and completes the proof.

