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Partial Solutions for HW9

Exercise 6.8 Find a formula for 1 + 4 + 7 + · · ·+ (3n− 2) for positive integers n and then
verify your formula by mathematical induction.

Solution. We first make a guess and then prove it by mathematical induction. Note that

1 + 4 + 7 + · · ·+ (3n− 2) =
n∑

i=1

(3i− 2)

= 3
n∑

i=1

i− 2
n∑

i=1

1

= 3 · n(n + 1)

2
− 2n

=
n(3n− 1)

2
.

In fact, the above lines are more or less the proof. But we will still verify it with mathematical
induction now. Since

1 =
1 · (3 · 1− 1)

2
,

the statement is true for n = 1. Assume that

1 + 4 + 7 + · · ·+ (3k − 2) =
k(3k − 1)

2
,

where k is a positive integer. Then we have

1 + 4 + 7 + · · ·+ (3k − 2) +
(
3(k + 1)− 2

)
=

k(3k − 1)

2
+ (3k + 1)

=
3k2 + 5k + 2

2

=
(k + 1)(3k + 2)

2

=
(k + 1)

(
3(k + 1) + 2

)
2

,

which proves the statement for k + 1. �

Exercise 6.16 Prove that 7 | 34n+1 − 52n−1 for every positive integer n.

Proof. We prove by mathematical induction. Since

35 − 51 = 243− 5 = 238 = 7 · 34,

the statement is true for n = 1. Assume that

7 | 34k+1 − 52k−1,
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where k is a positive integer. That is,

∃m ∈ Z s.t. 34k+1 − 52k−1 = 7m.

Therefore, we have

34(k+1)+1 − 52(k+1)−1 = 34 · 34k+1 − 52 · 52k−1

= 81(52k−1 + 7m)− 25 · 52k−1

= (81− 25)52k−1 + 7 · 81 ·m

= 7
(

8 · 52k−1 + 81m
)
.

This means that
7 | 34(k+1)+1 − 52(k+1)−1,

which completes the proof.

Exercise 6.24 Prove Bernoulli’s Identity: For every real number x > −1 and every positive
integer n,

(1 + x)n ≥ 1 + nx.

Proof. We prove by mathematical induction. Since

(1 + x) ≥ 1 + x ∀x ∈ R

the statement is true for n = 1. Assume that

(1 + x)k ≥ 1 + kx ∀x > −1

where k is a positive integer. For any x > −1, we have

(1 + x)k+1 = (1 + x)(1 + x)k

≥ (1 + x)(1 + kx)

= 1 + (1 + k)x + kx2

≥ 1 + (1 + k)x.

We have used the fact that x > −1 or (1 + x) > 0 for the second line. This proves the
statement for (k + 1), which completes the proof.

Exercise 6.34 A sequence {an} is defined recursively by a1 = 1, a2 = 2 and an = an−1+2an−2

for n ≥ 3. Conjecture a formula for an and verify that your conjecture is correct.

Solution. To make a guess, we compute the first few terms:

a1 = 1

a2 = 2

a3 = 2 + 2 · 1 = 4

a4 = 4 + 2 · 2 = 8

a5 = 8 + 2 · 4 = 16.
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It is then natural to conjecture
∀n ∈ N an = 2n−1.

We prove this conjecture by mathematical induction. Define statement

P (n) : an = 2n−1.

We will prove the followings:

(i) P (1), P (2) are true.

(ii) P (1) ∧ P (2) ∧ · · · ∧ P (n) =⇒ P (n + 1) for all natural numbers n ≥ 2.

By computation above, P (1) and P (2) are true. Now we assume P (1), P (2), · · · , P (n) where
n is a positive integer greater than equal to 2. Then we have

an+1 = an + 2an−1

= 2n−1 + 2 · 2n−2

= 2n−1 + 2n−1

= 2n,

where we used the statements P (n− 1) and P (n) for the second line. This proves P (n + 1)
and completes the proof. �

Exercise 6.36 Consider the sequence F1, F2, F3, . . . where

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5 and F6 = 8.

The terms of this sequence are called Fibonacci numbers.

(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.

(b) Prove that 2 |Fn if and only if 3 |n.

Proof. We define the sequence of Fibonacci numbers as

1. Initial condition: F1 = F2 = 1.

2. Recurrence relation: Fn = Fn−1 + Fn−2 for all n ≥ 3.

Define statement
P (n) : 2 |Fn ⇐⇒ 3 |n.

We will prove the followings:

(i) P (1), P (2), P (3) are true.

(ii) P (1) ∧ P (2) ∧ · · · ∧ P (n) =⇒ P (n + 1) for all natural numbers n ≥ 3.
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Note that P (1), P (2) and P (3) are true because F3 = 2 is the only even number out of F1,
F2, F3. Now we assume P (1), P (2), · · · , P (n) where n is a positive integer greater than equal
to 3. We have

Fn+1 = Fn + Fn−1

=
(
Fn−1 + Fn−2

)
+ Fn−1

= Fn−2 + 2 · Fn−1,

which implies that the parity of Fn+1 and Fn−2 is same. Therefore, we conclude

2 | Fn+1 ⇐⇒ 2 | Fn−2

⇐⇒ 3 | (n− 2)

⇐⇒ 3 | (n− 2) + 3

⇐⇒ 3 | (n + 1).

This proves P (n + 1) and completes the proof.
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