LECTURE 15
(Wed. FEB. 12, 2020)
Recall: A bijective \(f: X \rightarrow Y \) has an "inverse function" \(f^{-1}: Y \rightarrow X \)

\[f^{-1}(y) = \text{the } x \in X \text{ mapping to } y \text{ via } f. \]

In other words, \(f(f^{-1}(y)) = y \) and \(f^{-1}(f(x)) = x. \)

Reformulate:

\[f \circ f^{-1} = \text{Id}_Y \text{ and } f^{-1} \circ f = \text{Id}_X. \]

[Here, \(\text{Id}_X: X \rightarrow X \) is the identity function \(\text{Id}_X(x) = x. \).]

Example (cont): \(f(x) = \frac{1}{x} \) \(g(x) = e^x \)

\[f \text{ is both one-to-one bijective } (0, \infty) \rightarrow (0, \infty) \]

Graphs:

\(g \) is bijective \(\mathbb{R} \rightarrow (0, \infty) \)

\(f^{-1} = f \)

\(g^{-1} = \ln \)

(Indeed \((f \circ f)(x) = f(\frac{1}{x}) = \frac{1}{x} = x \)

and \((\exp \circ \ln)(x) = e^{\ln x} = x \)

\((\ln \circ \exp)(x) = \ln(e^x) = x \)
Stress: When \(f \) not bijective, \(f^{-1} \) doesn't make sense!

Ex: \(f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \)
- Here \(f(x) = y \) has two solutions \(x = \pm \sqrt{y} \).
 - Which one should be \(f^{-1}(y) \)?

If we declare that
\[f^{-1}(y) := \sqrt{y} \ (\text{the positive solution}) \]

Then
\[f(f^{-1}(y)) = \sqrt{y^2} = y \]

But
\[f^{-1}(f(x)) = \sqrt{x^2} = |x| \neq x \text{ for } x < 0. \]

- So, viewing \(f \) as a function \(\mathbb{R} \to [0, \infty) \) it has a right inverse, but not a two-sided inverse.

- However, viewing \(f \) as a function \((0, \infty) \to (0, \infty) \) it does have \(f^{-1} \) (bijective)
 \(" the pos. square root" \)
Exercise: Function $f : X \rightarrow Y$.

- f is surjective \iff f has a right inverse ($f \circ g = \text{Id}_Y$).

- f is injective \iff f has a left inverse ($g \circ f = \text{Id}_X$).

(This g is not unique in general, cf. above ex.: $\pm \sqrt{y}$.)
Let \(f: X \to Y \) be a function.

Definition (1) For every \(A \subseteq X \) its **image** (under \(f \)) is the subset \(f(A) \subseteq Y \) defined by

\[
 f(A) = \{ y \in Y : \exists a \in A \text{ such that } y = f(a) \} = \{ f(a) : a \in A \}.
\]

(2) For every \(C \subseteq Y \) its **inverse image** (via \(f \)) is the subset \(f^{-1}(C) \subseteq X \) given by

\[
 f^{-1}(C) = \{ x \in X : f(x) \in C \}.
\]

Note: \(f^{-1}(C) \) makes sense even if \(f \) is not bijective (i.e., there's no \(f^{-1} \)).
- When \(f \) is bijective, \(f^{-1}(C) \) equals the *image of \(C \) under \(f^{-1} \)* (so no conflict in notation).

Image:

\[X \xrightarrow{f} Y \]

\(A \rightarrow f(A) \)