MATH 109, MATHEMATICAL REASONING, MIDTERM EXAM NUMBER 1

Monday, January 27th, 2020, 11-11:50am, APM B402A

- Your Name:
- ID Number:
- Section:

C01 (4:00 PM) C02 (5:00 PM)

Problem #	Points (out of 10)
1	
2	
3	
4	
5	

Total (out of 50):

Problem 1. Let $X = \{1, 2, 3, ..., 10\}$ be the set consisting of all the positive integers less than or equal to 10.

- (a) Give its cardinality |X|.
- (b) How many subsets does X have?
- (c) Let $A = \{2, 3, 5, 7\}$. List all the elements of its complement \overline{A} in X.

Problem 2. Keep the set $X = \{1, 2, 3, ..., 10\}$ and the subset $A = \{2, 3, 5, 7\}$ introduced in Problem 1. Furthermore let $B = \{1, 3, 7, 9\}$.

- (a) List all elements of their union $A \cup B$ and of their intersection $A \cap B$.
- (b) List all elements of the two differences A B and B A.
- (c) Are A and B disjoint subsets?

Problem 3. Consider the sequence $A_1, A_2, A_3...$ of intervals in \mathbb{R} defined by $A_n = [0, \frac{1}{n}]$. (Both endpoints 0 and $\frac{1}{n}$ are included.)

- (a) Which of the following statements are true, and which are false? Justify your answers.
 - (1) $A_{2020} \subseteq A_{2019}$
 - (2) $\frac{1}{2019} \in A_{2020}$
- (b) Find their union $\bigcup_{n=1}^{\infty} A_n$ and intersection $\bigcap_{n=1}^{\infty} A_n$.
- (c) Do the sets $A_n A_{n+1}$ form a partition of (0, 1] where $n = 1, 2, 3, \ldots$?

Problem 4. For each of the mathematical statements below, indicate whether it is <u>true</u> or <u>false</u>. Justify your answers.

- (a) $\forall a \in \mathbb{R} \ \exists b \in \mathbb{N} : a < b$
- (b) $\exists a \in \mathbb{R} \ \forall b \in \mathbb{N} : a < b$
- (c) $\forall n \in \mathbb{Z} : (n > 0) \lor (n < 0)$
- (d) $\exists r \in \mathbb{Q} : (r < 0) \land (r > 0)$
- (e) $x \in \mathbb{Q} \Longrightarrow x + \sqrt{2} \in \mathbb{Q}$

Problem 5. Recall that \mathbb{Z} is partitioned into three subsets of numbers:

 $A = \{3n : n \in \mathbb{Z}\} \qquad B = \{3n + 1 : n \in \mathbb{Z}\} \qquad C = \{3n + 2 : n \in \mathbb{Z}\}.$

- (a) Which of these three subsets contains the number 1000?
- (b) Verify the following two implications.
 - (i) $(x \in B) \land (y \in B) \Longrightarrow xy \in B$.
 - $\text{(ii)} \ (x\in C)\wedge (y\in C)\Longrightarrow xy\in B.$