Math 109, Mathematical Reasoning, Midterm Exam Number 1

Monday, January 27th, 2020, 11-11:50am, APM B402A

- Your Name:
- ID Number:
- Section:

> C01 (4:00 PM) C02 (5:00 PM)

Problem \#	Points (out of 10)
1	
2	
3	
4	
5	

Total (out of 50):

Problem 1. Let $X=\{1,2,3, \ldots, 10\}$ be the set consisting of all the positive integers less than or equal to 10 .
(a) Give its cardinality $|X|$.
(b) How many subsets does X have?
(c) Let $A=\{2,3,5,7\}$. List all the elements of its complement \bar{A} in X.

Problem 2. Keep the set $X=\{1,2,3, \ldots, 10\}$ and the subset $A=\{2,3,5,7\}$ introduced in Problem 1. Furthermore let $B=\{1,3,7,9\}$.
(a) List all elements of their union $A \cup B$ and of their intersection $A \cap B$.
(b) List all elements of the two differences $A-B$ and $B-A$.
(c) Are A and B disjoint subsets?

Problem 3. Consider the sequence $A_{1}, A_{2}, A_{3} \ldots$ of intervals in \mathbb{R} defined by $A_{n}=\left[0, \frac{1}{n}\right]$. (Both endpoints 0 and $\frac{1}{n}$ are included.)
(a) Which of the following statements are true, and which are false? Justify your answers.
(1) $A_{2020} \subseteq A_{2019}$
(2) $\frac{1}{2019} \in A_{2020}$
(b) Find their union $\bigcup_{n=1}^{\infty} A_{n}$ and intersection $\bigcap_{n=1}^{\infty} A_{n}$.
(c) Do the sets $A_{n}-A_{n+1}$ form a partition of $(0,1]$ where $n=1,2,3, \ldots$?

Problem 4. For each of the mathematical statements below, indicate whether it is true or false. Justify your answers.
(a) $\forall a \in \mathbb{R} \quad \exists b \in \mathbb{N}: a<b$
(b) $\exists a \in \mathbb{R} \quad \forall b \in \mathbb{N}: a<b$
(c) $\forall n \in \mathbb{Z}:(n>0) \vee(n<0)$
(d) $\exists r \in \mathbb{Q}:(r<0) \wedge(r>0)$
(e) $x \in \mathbb{Q} \Longrightarrow x+\sqrt{2} \in \mathbb{Q}$

Problem 5. Recall that \mathbb{Z} is partitioned into three subsets of numbers:

$$
A=\{3 n: n \in \mathbb{Z}\} \quad B=\{3 n+1: n \in \mathbb{Z}\} \quad C=\{3 n+2: n \in \mathbb{Z}\}
$$

(a) Which of these three subsets contains the number 1000 ?
(b) Verify the following two implications.
(i) $(x \in B) \wedge(y \in B) \Longrightarrow x y \in B$.
(ii) $(x \in C) \wedge(y \in C) \Longrightarrow x y \in B$.

