Math 109, Mathematical Reasoning, Midterm Exam Number 2

Monday, February 24th, 2020, 11-11:50am, Peterson Hall 104

- Your Name:
- ID Number:
- Section:

> C01 (4:00 PM) C02 (5:00 PM)

Problem \#	Points (out of 10)
1	
2	
3	
4	
5	

Total (out of 50):

Problem 1. Define a relation \sim on the set of real numbers \mathbb{R} by declaring that

$$
a \sim b \Longleftrightarrow a-b \in \mathbb{Z} .
$$

(Here $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ is the set of all integers.)
(a) Show that \sim is an equivalence relation on \mathbb{R}.
(b) List all x in the range $0<x<3$ belonging to the equivalence class of $\sqrt{2}$.

Problem 2. In this problem [3] denotes the residue class of 3 modulo 7 .
(a) Give the integer r in the range $0 \leq r<7$ satisfying $r \equiv 100(\bmod 7)$.
(b) List all elements of [3] belonging to the open interval $(-20,20)$.
(c) Give an $x \in[3]$ such that $x^{2} \in[3]$ or disprove the existence of such an x.

Problem 3. Define a function $f:\{1,2,3,4\} \longrightarrow\{1,2,3,4\}$ as follows:

$$
f(1)=4 \quad f(2)=1 \quad f(3)=3 \quad f(4)=4 .
$$

(a) Is f surjective or injective? (Give a thorough explanation.)
(b) Calculate the value $(f \circ f)(2)$.
(c) List all elements of the two subsets $f(\{1,2\})$ and $f^{-1}(\{3,4\})$.

Problem 4.

(a) Suppose you are given 11 positive integers. Explain why at least two of them must have the same last digit.
(b) Suppose you are given 5 points in a disk of radius 1. Explain why at least two of them are within a distance $\sqrt{2}$ of each other.

Problem 5. Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be a sequence of real numbers converging to a number $x \in \mathbb{R}$.
(a) Prove that the sequence is bounded ${ }^{1}$.
(b) Give an example of a bounded sequence which is not convergent.

[^0]
[^0]: ${ }^{1}$ This means there is a constant $B>0$ such that $\left|x_{n}\right|<B$ for all $n \in \mathbb{N}$.

