MATH 204B, WINTER 2019

NUMBER THEORY II, FINAL EXAM (TAKE-HOME)

Due Monday March 18th in APM 6151 (under the door) by <u>3PM</u>.

Problem A. Let $p \equiv 1 \pmod{3}$ be a prime number.

- (a) Show that every cubic Galois extension E/\mathbb{Q}_p is of the form $E = \mathbb{Q}_p(\sqrt[3]{\theta})$ for some $\theta \in \mathbb{Q}_p^{\times}$ (not in $\mathbb{Q}_p^{\times 3}$) and vice versa.
- (b) How many cubic Galois extensions E does Q_p have (inside a fixed algebraic closure)? Are they all tamely ramified?

Problem B.

- (a) Does the additive group \mathbb{Q}_p have a maximal compact subgroup?
- (b) Show that \mathbb{Z}_p^{\times} is the unique maximal compact subgroup of \mathbb{Q}_p^{\times} . Generalize this statement and your argument to finite extensions of \mathbb{Q}_p .
- (c) Let $G \subset \overline{\mathbb{Q}}_p^{\times}$ be a compact subgroup. Prove that G is contained in the units U_K for some finite extension K/\mathbb{Q}_p . (Hint: Write G as a countable union of closed subsets $G \cap K^{\times}$ and use that G is a Baire space.)

Problem C. Let K be a non-archimedean local field with valuation v_K (which extends uniquely to an algebraic closure \bar{K}). Let

$$f(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \in K[X]$$

be a polynomial with nonzero leading and constant coefficients; $a_0 a_n \neq 0$.

(a) Suppose the roots $\alpha_1, \ldots, \alpha_n \in \overline{K}$ of f have distinct (finite) valuations

$$v_K(\alpha_1) > v_K(\alpha_2) > \cdots > v_K(\alpha_n).$$

Check that all $a_i \neq 0$ and join the points $P_i = (i, v_K(a_i))$ in the plane by a piecewise linear segment. Show that the **slopes** of this convex segment are precisely $-v_K(\alpha_i)$ for i = 1, ..., n. (b) Extend the result from (a) to the general case without assumptions on the $v_K(\alpha_i)$ (allowing distinct roots to have the same valuation).

Hint: Consider the "lower convex hull" of the set of points P_i . It might be helpful to do the case n = 2 first.

Problem D. A quaternion algebra D over \mathbb{Q}_p admits a basis $\{1, i, j, k\}$ satisfying the relations

$$i^2 = a$$
 $j^2 = b$ $ij = k = -ji$

for some $a, b \in \mathbb{Q}_p^{\times}$. (This follows easily from the Skolem-Noether theorem.)

(a) When a = 1 show that there is an isomorphism $D \xrightarrow{\sim} M_2(\mathbb{Q}_p)$ given by

$$1\mapsto \begin{pmatrix}1&0\\0&1\end{pmatrix} \qquad i\mapsto \begin{pmatrix}1&0\\0&-1\end{pmatrix} \qquad j\mapsto \begin{pmatrix}0&b\\1&0\end{pmatrix} \qquad k\mapsto \begin{pmatrix}0&b\\-1&0\end{pmatrix}.$$

(b) Show that D contains at least the following three quadratic subfields:

$$\mathbb{Q}_p(\sqrt{a})$$
 $\mathbb{Q}_p(\sqrt{b})$ $\mathbb{Q}_p(\sqrt{-ab}).$

Deduce that $\mathbb{Q}_{p^2} \subset D$ (where \mathbb{Q}_{p^2} is the unramified quadratic extension).

- (c) Prove that the following five conditions are equivalent:
 - (1) D is isomorphic to the matrix algebra $M_2(\mathbb{Q}_p)$.
 - (2) D is <u>not</u> a division algebra.
 - (3) There is a nonzero $q \in D$ with norm $N(q) = q\bar{q} = 0$.
 - (4) The element a lies in the norm group of $\mathbb{Q}_p(\sqrt{b})$.
 - (5) $(a, b)_2 = 1$, where $(\cdot, \cdot)_2$ denotes the Hilbert symbol that is the pairing

$$\mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times} \longrightarrow \{\pm 1\} \qquad (a,b)_2 = \phi_{\mathbb{Q}_p}(a)(\sqrt{b})/\sqrt{b}.$$

(Here $\phi_{\mathbb{Q}_p}$ is the Artin map.)

Hints: For (1) \iff (2) just apply Wedderburn's theorem. For the implication (5) \implies (1) suppose $b^{-1} = N(r + s\sqrt{a})$ – then introduce the elements u = rj + sk and v = (1 + a)i + (1 - a)ui and refer to part (a).

(d) Note that your arguments in (c) work for any finite extension of \mathbb{Q}_p and conclude that there is an isomorphism

$$D \otimes_{\mathbb{Q}_n} K \xrightarrow{\sim} M_2(K)$$

where $K \subset D$ is any of the three quadratic subfields from part (b).

Problem E. Let p be a prime. A "strict p-ring" is a p-adically complete p-torsion-free ring R for which R/(p) is perfect (meaning the p-power Frobenius map $\varphi: R/(p) \longrightarrow R/(p)$ sending $x \mapsto x^p$ is a bijection).

- (a) For such R check that R/(p) is necessarily reduced (has no nonzero nilpotents).
- (b) If K/\mathbb{Q}_p is a finite extension, deduce that its valuation ring \mathcal{O}_K is a strict *p*-ring if and only if K/\mathbb{Q}_p is unramified.
- (c) Prove that the projection map $\pi : R \longrightarrow R/(p)$ admits a **unique** multiplicative section $[\bullet] : R/(p) \longrightarrow R$ (known as the "Teichmüller map").

(Hint: For each *n* choose a lift $x_n \in R$ of $\varphi^{-n}(\bar{x})$. If *s* is a multiplicative section of the projection $(\pi \circ s = \text{Id})$ show that $s(\bar{x}) = \lim_{n \to \infty} x_n^{p^n}$.)

(d) Show that every element $x \in R$ has a "Teichmüller expansion"

$$x = \sum_{n=0}^{\infty} [\bar{a}_n] \cdot p^n$$

for a **unique** sequence of coordinates $\bar{a}_0, \bar{a}_1, \bar{a}_2, \ldots$ in R/(p).

(Fact: One can show that the functor $R \rightsquigarrow R/(p)$ is an equivalence between the category of strict *p*-rings and that of perfect rings of characteristic *p*. Given a perfect ring \mathcal{R} there is a natural choice of a strict *p*-ring known as the ring of Witt vectors $W(\mathcal{R})$. For instance $W(\mathbb{F}_p) = \mathbb{Z}_p$ and $W(\overline{\mathbb{F}}_p) = \widehat{\mathbb{Z}_p^{ur}}$, cf. Problem C on HW8.)