Number Theory II, Final Exam (Take-home)

Due Monday March 18th in APM 6151 (under the door) by 3PM.

Problem A. Let $p \equiv 1(\bmod 3)$ be a prime number.
(a) Show that every cubic Galois extension E / \mathbb{Q}_{p} is of the form $E=\mathbb{Q}_{p}(\sqrt[3]{\theta})$ for some $\theta \in \mathbb{Q}_{p}^{\times}\left(\right.$not in $\left.\mathbb{Q}_{p}^{\times 3}\right)$ - and vice versa.
(b) How many cubic Galois extensions E does \mathbb{Q}_{p} have (inside a fixed algebraic closure)? Are they all tamely ramified?

Problem B.

(a) Does the additive group \mathbb{Q}_{p} have a maximal compact subgroup?
(b) Show that \mathbb{Z}_{p}^{\times}is the unique maximal compact subgroup of \mathbb{Q}_{p}^{\times}. Generalize this statement - and your argument - to finite extensions of \mathbb{Q}_{p}.
(c) Let $G \subset \overline{\mathbb{Q}}_{p}^{\times}$be a compact subgroup. Prove that G is contained in the units U_{K} for some finite extension K / \mathbb{Q}_{p}. (Hint: Write G as a countable union of closed subsets $G \cap K^{\times}$and use that G is a Baire space.)

Problem C. Let K be a non-archimedean local field with valuation v_{K} (which extends uniquely to an algebraic closure \bar{K}). Let

$$
f(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \in K[X]
$$

be a polynomial with nonzero leading and constant coefficients; $a_{0} a_{n} \neq 0$.
(a) Suppose the roots $\alpha_{1}, \ldots, \alpha_{n} \in \bar{K}$ of f have distinct (finite) valuations

$$
v_{K}\left(\alpha_{1}\right)>v_{K}\left(\alpha_{2}\right)>\cdots>v_{K}\left(\alpha_{n}\right)
$$

Check that all $a_{i} \neq 0$ and join the points $P_{i}=\left(i, v_{K}\left(a_{i}\right)\right)$ in the plane by a piecewise linear segment. Show that the slopes of this convex segment are precisely $-v_{K}\left(\alpha_{i}\right)$ for $i=1, \ldots, n$.
(b) Extend the result from (a) to the general case without assumptions on the $v_{K}\left(\alpha_{i}\right)$ (allowing distinct roots to have the same valuation).

Hint: Consider the "lower convex hull" of the set of points P_{i}. It might be helpful to do the case $n=2$ first.

Problem D. A quaternion algebra D over \mathbb{Q}_{p} admits a basis $\{1, i, j, k\}$ satisfying the relations

$$
i^{2}=a \quad j^{2}=b \quad i j=k=-j i
$$

for some $a, b \in \mathbb{Q}_{p}^{\times}$. (This follows easily from the Skolem-Noether theorem.)
(a) When $a=1$ show that there is an isomorphism $D \xrightarrow{\sim} M_{2}\left(\mathbb{Q}_{p}\right)$ given by

$$
1 \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad i \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad j \mapsto\left(\begin{array}{ll}
0 & b \\
1 & 0
\end{array}\right) \quad k \mapsto\left(\begin{array}{cc}
0 & b \\
-1 & 0
\end{array}\right) .
$$

(b) Show that D contains at least the following three quadratic subfields:

$$
\mathbb{Q}_{p}(\sqrt{a}) \quad \mathbb{Q}_{p}(\sqrt{b}) \quad \mathbb{Q}_{p}(\sqrt{-a b})
$$

Deduce that $\mathbb{Q}_{p^{2}} \subset D$ (where $\mathbb{Q}_{p^{2}}$ is the unramified quadratic extension).
(c) Prove that the following five conditions are equivalent:
(1) D is isomorphic to the matrix algebra $M_{2}\left(\mathbb{Q}_{p}\right)$.
(2) D is not a division algebra.
(3) There is a nonzero $q \in D$ with norm $N(q)=q \bar{q}=0$.
(4) The element a lies in the norm group of $\mathbb{Q}_{p}(\sqrt{b})$.
(5) $(a, b)_{2}=1$, where $(\cdot, \cdot)_{2}$ denotes the Hilbert symbol - that is the pairing

$$
\mathbb{Q}_{p}^{\times} \times \mathbb{Q}_{p}^{\times} \longrightarrow\{ \pm 1\} \quad(a, b)_{2}=\phi_{\mathbb{Q}_{p}}(a)(\sqrt{b}) / \sqrt{b}
$$

(Here $\phi_{\mathbb{Q}_{p}}$ is the Artin map.)
Hints: For $(1) \Longleftrightarrow(2)$ just apply Wedderburn's theorem. For the implication (5) $\Longrightarrow(1)$ suppose $b^{-1}=N(r+s \sqrt{a})$ - then introduce the elements $u=r j+s k$ and $v=(1+a) i+(1-a) u i$ and refer to part (a).
(d) Note that your arguments in (c) work for any finite extension of \mathbb{Q}_{p} and conclude that there is an isomorphism

$$
D \otimes_{\mathbb{Q}_{p}} K \xrightarrow{\sim} M_{2}(K)
$$

where $K \subset D$ is any of the three quadratic subfields from part (b).

Problem E. Let p be a prime. A "strict p-ring" is a p-adically complete p -torsion-free ring R for which $R /(p)$ is perfect (meaning the p-power Frobenius map $\varphi: R /(p) \longrightarrow R /(p)$ sending $x \mapsto x^{p}$ is a bijection).
(a) For such R check that $R /(p)$ is necessarily reduced (has no nonzero nilpotents).
(b) If K / \mathbb{Q}_{p} is a finite extension, deduce that its valuation ring \mathcal{O}_{K} is a strict p-ring if and only if K / \mathbb{Q}_{p} is unramified.
(c) Prove that the projection map $\pi: R \longrightarrow R /(p)$ admits a unique multiplicative section $[\bullet]: R /(p) \longrightarrow R$ (known as the "Teichmüller map").
(Hint: For each n choose a lift $x_{n} \in R$ of $\varphi^{-n}(\bar{x})$. If s is a multiplicative section of the projection $(\pi \circ s=\mathrm{Id})$ show that $\left.s(\bar{x})=\lim _{n \rightarrow \infty} x_{n}^{p^{n}}.\right)$
(d) Show that every element $x \in R$ has a "Teichmüller expansion"

$$
x=\sum_{n=0}^{\infty}\left[\bar{a}_{n}\right] \cdot p^{n}
$$

for a unique sequence of coordinates $\bar{a}_{0}, \bar{a}_{1}, \bar{a}_{2}, \ldots$ in $R /(p)$.
(Fact: One can show that the functor $R \rightsquigarrow R /(p)$ is an equivalence between the category of strict p-rings and that of perfect rings of characteristic p. Given a perfect ring \mathcal{R} there is a natural choice of a strict p-ring known as the ring of Witt vectors $W(\mathcal{R})$. For instance $W\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$ and $W\left(\overline{\mathbb{F}}_{p}\right)=\widehat{\mathbb{Z}_{p}^{\text {ur }}}$, cf. Problem C on HW8.)

