Math 204B, Winter 2019
Number Theory II, HW 1

Due Wednesday January 16th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

- Exercises:

3 on page 106; 1 and 2 on page 115

Problem A. Let $|\cdot|_{1},|\cdot|_{2}, \ldots,|\cdot|_{n}$ be non-trivial inequivalent absolute values on a field K.
(a) Show that there is an element $a \in K$ with the following properties:

$$
|a|_{1}>1, \quad|a|_{2}<1, \ldots, \quad|a|_{n}<1
$$

(Hint. Induction on n. For $n=2$ use that the open unit ball for $|\cdot|_{1}$ at 0 is not contained in that of $|\cdot|_{2}$, and vice versa.)
(b) Let $a_{1}, \ldots, a_{n} \in K$ be arbitrary elements. Prove that for every $\epsilon>0$ there exists an $x \in K$ such that

$$
\left|x-a_{i}\right|_{i}<\epsilon \quad \forall i=1,2, \ldots, n
$$

(Hint. First do the case $a_{1}=1, a_{2}=\cdots=a_{n}=0$ by considering $\frac{a^{r}}{1+a^{r}}$ for large enough r. In general try $x=a_{1} x_{1}+\cdots+a_{n} x_{n}$ where x_{i} is close to 1 relative to $|\cdot|_{i}$ and close to 0 relative to the others.)

Problem B. Consider the ring of p-adic integers $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}$, thought of as the set of compatible residue classes $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \ldots\right)$.
(a) Show that \mathbb{Z}_{p} is a local domain with maximal ideal $\mathfrak{m}_{\mathbb{Z}_{p}}=(p)=p \mathbb{Z}_{p}$.
(b) There are (at least) three natural ways to endow \mathbb{Z}_{p} with a topology:

- Taking the ideals $p^{n} \mathbb{Z}_{p}$ to be a neighborhood basis at 0 ;
- Taking the induced topology from the product $\prod_{n>0} \mathbb{Z} / p^{n} \mathbb{Z}$;
- The coarsest topology making the maps $\mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ continuous.

Check that all three give rise to the same topology.

