Math 204B, Winter 2019

Number Theory II, HW 2

Due Wednesday January 23rd in class (or by noon).

From Neukirch's book Algebraic Number Theory:

- Exercises:

3 and 5 on page 115; 4 on page 123

Problem A. Let K be a field with a non-archimedean absolute value $|\cdot|$.
(a) Let $x, y \in K$. Show that the strong triangle inequality

$$
|x+y| \leq \max \{|x|,|y|\}
$$

is an equality when $|x| \neq|y|$.
(b) Let $x_{1}, \ldots, x_{n} \in K$. Show that

$$
\left|x_{1}+\cdots+x_{n}\right|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

provided the maximum on the right is achieved exactly once (that is some $\left|x_{i}\right|$ is larger than all $\left|x_{j}\right|$ for $j \neq i$). Hint: You may assume $i=1$, in which case the assumption amounts to the inequality $\left|x_{1}\right|>\max \left\{\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$.

Problem B. Let K be a field with a non-trivial non-archimedean absolute value $|\cdot|$, and let $R=\{x \in K:|x| \leq 1\}$ be its valuation ring.
(a) Check that R is integrally closed in its fraction field $\operatorname{Frac}(R)=K$.
(b) Suppose $\left|K^{\times}\right|$is discrete and choose a uniformizer $\pi \in R$. Explain why every nonzero ideal of R is of the form $\left(\pi^{i}\right)$ for some $i \geq 0$. Deduce that R is a Dedekind domain.

