MATH 204B, WINTER 2019

NUMBER THEORY II, HW 2

Due Wednesday January 23rd in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

3 and 5 on page 115; 4 on page 123

Problem A. Let K be a field with a non-archimedean absolute value $|\cdot|$.

(a) Let $x, y \in K$. Show that the strong triangle inequality

$$|x+y| \le \max\{|x|, |y|\}$$

is an equality when $|x| \neq |y|$.

(b) Let $x_1, \ldots, x_n \in K$. Show that

$$|x_1 + \dots + x_n| = \max\{|x_1|, \dots, |x_n|\}$$

provided the maximum on the right is achieved exactly once (that is some $|x_i|$ is larger than all $|x_j|$ for $j \neq i$). Hint: You may assume i = 1, in which case the assumption amounts to the inequality $|x_1| > \max\{|x_2|, \ldots, |x_n|\}$.

Problem B. Let K be a field with a non-trivial non-archimedean absolute value $|\cdot|$, and let $R = \{x \in K : |x| \le 1\}$ be its valuation ring.

- (a) Check that R is integrally closed in its fraction field Frac(R) = K.
- (b) Suppose $|K^{\times}|$ is discrete and choose a uniformizer $\pi \in R$. Explain why every nonzero ideal of R is of the form (π^i) for some $i \ge 0$. Deduce that R is a Dedekind domain.