MATH 204B, WINTER 2019

NUMBER THEORY II, HW 3

Due Wednesday January 30th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

• Exercises:

4 on page 106; 4 on page 115; 1 on page 123

Problem A. Let K be a field extension of \mathbb{C} with an absolute value $|\cdot|$ extending the ordinary one $|\cdot|_{\infty}$ on the complex numbers. This exercise shows that $K = \mathbb{C}$.

(a) Suppose there exists an $a \in K \setminus \mathbb{C}$. Show that a has a nearest point in \mathbb{C} . That is, there exists a $z_0 \in \mathbb{C}$ for which the inequality

$$|a-z| \ge |a-z_0|$$

is valid for all $z \in \mathbb{C}$.

(b) Replacing a by $a - z_0$, and then scaling by a suitable complex number, show the existence of an $a \in K \setminus \mathbb{C}$ satisfying

$$|a - z| \ge |a| > 1$$

for all $z \in \mathbb{C}$.

- (c) For an arbitrary $n \in \mathbb{N}$ use $a^n 1 = \prod_{i=0}^{n-1} (a \zeta^i)$ to show that |a 1| = |a|.
- (d) Deduce that |a n| = |a| for all $n \in \mathbb{N}$, and conclude $n \leq 2|a|$. (Contradiction.)

Problem B. Let $(K, |\cdot|)$ be a <u>non</u>-discretely valued non-archimedean field of residue characteristic $p = \operatorname{char}(R/\mathfrak{m}) > 0$. Suppose the *p*-power Frobenius map $R/(p) \longrightarrow R/(p)$ is surjective¹.

(a) Check that the valuation group $|K^{\times}|$ is generated by the set of all values |x| in the range $|p| < |x| \le 1$, and deduce that $|K^{\times}|$ is a *p*-divisible group.

¹A complete field K with these properties is called a *perfectoid* field.

(b) Infer from (a) that $\mathfrak{m} = \mathfrak{m}^2$, and conclude that R is <u>not</u> Noetherian (Hint: Krull's intersection theorem).