Math 204B, Winter 2019

Number Theory II, HW 3

Due Wednesday January 30th in class (or by noon).

From Neukirch's book Algebraic Number Theory:

- Exercises:

4 on page 106; 4 on page 115; 1 on page 123

Problem A. Let K be a field extension of \mathbb{C} with an absolute value $|\cdot|$ extending the ordinary one $|\cdot|_{\infty}$ on the complex numbers. This exercise shows that $K=\mathbb{C}$.
(a) Suppose there exists an $a \in K \backslash \mathbb{C}$. Show that a has a nearest point in \mathbb{C}. That is, there exists a $z_{0} \in \mathbb{C}$ for which the inequality

$$
|a-z| \geq\left|a-z_{0}\right|
$$

is valid for all $z \in \mathbb{C}$.
(b) Replacing a by $a-z_{0}$, and then scaling by a suitable complex number, show the existence of an $a \in K \backslash \mathbb{C}$ satisfying

$$
|a-z| \geq|a|>1
$$

for all $z \in \mathbb{C}$.
(c) For an arbitrary $n \in \mathbb{N}$ use $a^{n}-1=\prod_{i=0}^{n-1}\left(a-\zeta^{i}\right)$ to show that $|a-1|=|a|$.
(d) Deduce that $|a-n|=|a|$ for all $n \in \mathbb{N}$, and conclude $n \leq 2|a|$. (Contradiction.)

Problem B. Let $(K,|\cdot|)$ be a non-discretely valued non-archimedean field of residue characteristic $p=\operatorname{char}(R / \mathfrak{m})>0$. Suppose the p-power Frobenius map $R /(p) \longrightarrow R /(p)$ is surjective ${ }^{1}$.
(a) Check that the valuation group $\left|K^{\times}\right|$is generated by the set of all values $|x|$ in the range $|p|<|x| \leq 1$, and deduce that $\left|K^{\times}\right|$is a p-divisible group.

[^0](b) Infer from (a) that $\mathfrak{m}=\mathfrak{m}^{2}$, and conclude that R is not Noetherian (Hint: Krull's intersection theorem).

[^0]: ${ }^{1} \mathrm{~A}$ complete field K with these properties is called a perfectoid field.

